BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 22122400)

  • 1. Alzheimer's disease: redox dysregulation as a common denominator for diverse pathogenic mechanisms.
    von Bernhardi R; Eugenín J
    Antioxid Redox Signal; 2012 May; 16(9):974-1031. PubMed ID: 22122400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of oxidative stress in the progression of Alzheimer's disease.
    Sultana R; Butterfield DA
    J Alzheimers Dis; 2010; 19(1):341-53. PubMed ID: 20061649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding risk factors for Alzheimer's disease: interplay of neuroinflammation, connexin-based communication and oxidative stress.
    Quintanilla RA; Orellana JA; von Bernhardi R
    Arch Med Res; 2012 Nov; 43(8):632-44. PubMed ID: 23142264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial alterations, oxidative stress and neuroinflammation in Alzheimer's disease.
    Verri M; Pastoris O; Dossena M; Aquilani R; Guerriero F; Cuzzoni G; Venturini L; Ricevuti G; Bongiorno AI
    Int J Immunopathol Pharmacol; 2012; 25(2):345-53. PubMed ID: 22697066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative modification of brain proteins in Alzheimer's disease: perspective on future studies based on results of redox proteomics studies.
    Sultana R; Butterfield DA
    J Alzheimers Dis; 2013; 33 Suppl 1():S243-51. PubMed ID: 22683528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alzheimer's disease.
    De-Paula VJ; Radanovic M; Diniz BS; Forlenza OV
    Subcell Biochem; 2012; 65():329-52. PubMed ID: 23225010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular Calcium Dysregulation: Implications for Alzheimer's Disease.
    Magi S; Castaldo P; Macrì ML; Maiolino M; Matteucci A; Bastioli G; Gratteri S; Amoroso S; Lariccia V
    Biomed Res Int; 2016; 2016():6701324. PubMed ID: 27340665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Axonal transport and mitochondrial dysfunction in Alzheimer's disease.
    Riemer J; Kins S
    Neurodegener Dis; 2013; 12(3):111-24. PubMed ID: 23037012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new insight on Al-maltolate-treated aged rabbit as Alzheimer's animal model.
    Bharathi ; Shamasundar NM; Sathyanarayana Rao TS; Dhanunjaya Naidu M; Ravid R; Rao KS
    Brain Res Rev; 2006 Sep; 52(2):275-92. PubMed ID: 16782202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies.
    Chen Z; Zhong C
    Prog Neurobiol; 2013 Sep; 108():21-43. PubMed ID: 23850509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetyl-L-carnitine-induced up-regulation of heat shock proteins protects cortical neurons against amyloid-beta peptide 1-42-mediated oxidative stress and neurotoxicity: implications for Alzheimer's disease.
    Abdul HM; Calabrese V; Calvani M; Butterfield DA
    J Neurosci Res; 2006 Aug; 84(2):398-408. PubMed ID: 16634066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox proteomics identification of oxidatively modified proteins in Alzheimer's disease brain and in vivo and in vitro models of AD centered around Abeta(1-42).
    Sultana R; Perluigi M; Butterfield DA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Mar; 833(1):3-11. PubMed ID: 16236561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial Regulatory Pathways in the Pathogenesis of Alzheimer's Disease.
    Adiele RC; Adiele CA
    J Alzheimers Dis; 2016 Jul; 53(4):1257-70. PubMed ID: 27392851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased protein and lipid oxidative damage in mitochondria isolated from lymphocytes from patients with Alzheimer's disease: insights into the role of oxidative stress in Alzheimer's disease and initial investigations into a potential biomarker for this dementing disorder.
    Sultana R; Mecocci P; Mangialasche F; Cecchetti R; Baglioni M; Butterfield DA
    J Alzheimers Dis; 2011; 24(1):77-84. PubMed ID: 21383494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox proteomics identification of oxidatively modified brain proteins in Alzheimer's disease and mild cognitive impairment: insights into the progression of this dementing disorder.
    Butterfield DA; Sultana R
    J Alzheimers Dis; 2007 Aug; 12(1):61-72. PubMed ID: 17851195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondria are a direct site of A beta accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression.
    Manczak M; Anekonda TS; Henson E; Park BS; Quinn J; Reddy PH
    Hum Mol Genet; 2006 May; 15(9):1437-49. PubMed ID: 16551656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress in Alzheimer's disease brain: new insights from redox proteomics.
    Butterfield DA; Perluigi M; Sultana R
    Eur J Pharmacol; 2006 Sep; 545(1):39-50. PubMed ID: 16860790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic, metallic, and mitotic sources of oxidative stress in Alzheimer disease.
    Smith MA; Nunomura A; Zhu X; Takeda A; Perry G
    Antioxid Redox Signal; 2000; 2(3):413-20. PubMed ID: 11229355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial dysfunction: the missing link between aging and sporadic Alzheimer's disease.
    Grimm A; Friedland K; Eckert A
    Biogerontology; 2016 Apr; 17(2):281-96. PubMed ID: 26468143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into mitochondrial dysfunction: aging, amyloid-β, and tau-A deleterious trio.
    Schmitt K; Grimm A; Kazmierczak A; Strosznajder JB; Götz J; Eckert A
    Antioxid Redox Signal; 2012 Jun; 16(12):1456-66. PubMed ID: 22117646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.