These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22122823)

  • 1. Nestin-expressing cells in the developing, mature and noise-exposed cochlear epithelium.
    Watanabe R; Morell MH; Miller JM; Kanicki AC; O'Shea KS; Altschuler RA; Raphael Y
    Mol Cell Neurosci; 2012 Feb; 49(2):104-9. PubMed ID: 22122823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lgr5-positive supporting cells generate new hair cells in the postnatal cochlea.
    Bramhall NF; Shi F; Arnold K; Hochedlinger K; Edge AS
    Stem Cell Reports; 2014 Mar; 2(3):311-22. PubMed ID: 24672754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of candidate markers for stem/progenitor cells in the inner ears of developing and adult GFAP and nestin promoter-GFP transgenic mice.
    Smeti I; Savary E; Capelle V; Hugnot JP; Uziel A; Zine A
    Gene Expr Patterns; 2011; 11(1-2):22-32. PubMed ID: 20817025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct population of hair cell progenitors can be isolated from the postnatal mouse cochlea using side population analysis.
    Savary E; Hugnot JP; Chassigneux Y; Travo C; Duperray C; Van De Water T; Zine A
    Stem Cells; 2007 Feb; 25(2):332-9. PubMed ID: 17038670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stem/progenitor cells in the postnatal inner ear of the GFP-nestin transgenic mouse.
    Lopez IA; Zhao PM; Yamaguchi M; de Vellis J; Espinosa-Jeffrey A
    Int J Dev Neurosci; 2004 Jun; 22(4):205-13. PubMed ID: 15245756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nestin expression in the developing rat cochlea sensory epithelia.
    Kojima K; Takebayashi S; Nakagawa T; Iwai K; Ito J
    Acta Otolaryngol Suppl; 2004 Mar; (551):14-7. PubMed ID: 15078070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of tympanic border cells as slow-cycling cells in the cochlea.
    Taniguchi M; Yamamoto N; Nakagawa T; Ogino E; Ito J
    PLoS One; 2012; 7(10):e48544. PubMed ID: 23119055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multipotent stem cells from the young rat inner ear.
    Lou X; Zhang Y; Yuan C
    Neurosci Lett; 2007 Apr; 416(1):28-33. PubMed ID: 17350759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural stem cells injected into the sound-damaged cochlea migrate throughout the cochlea and express markers of hair cells, supporting cells, and spiral ganglion cells.
    Parker MA; Corliss DA; Gray B; Anderson JK; Bobbin RP; Snyder EY; Cotanche DA
    Hear Res; 2007 Oct; 232(1-2):29-43. PubMed ID: 17659854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation of the lateral compartment of the cochlea requires a temporally restricted FGF20 signal.
    Huh SH; Jones J; Warchol ME; Ornitz DM
    PLoS Biol; 2012 Jan; 10(1):e1001231. PubMed ID: 22235191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining the cellular environment in the organ of Corti following extensive hair cell loss: a basis for future sensory cell replacement in the Cochlea.
    Taylor RR; Jagger DJ; Forge A
    PLoS One; 2012; 7(1):e30577. PubMed ID: 22299045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Jxc1/Sobp, encoding a nuclear zinc finger protein, is critical for cochlear growth, cell fate, and patterning of the organ of corti.
    Chen Z; Montcouquiol M; Calderon R; Jenkins NA; Copeland NG; Kelley MW; Noben-Trauth K
    J Neurosci; 2008 Jun; 28(26):6633-41. PubMed ID: 18579736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TAK1 expression in the cochlea: a specific marker for adult supporting cells.
    Parker MA; Jiang K; Kempfle JS; Mizutari K; Simmons CL; Bieber R; Adams J; Edge AS
    J Assoc Res Otolaryngol; 2011 Aug; 12(4):471-83. PubMed ID: 21472480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postnatal development of the hamster cochlea. I. Growth of hair cells and the organ of Corti.
    Kaltenbach JA; Falzarano PR
    J Comp Neurol; 1994 Feb; 340(1):87-97. PubMed ID: 8176004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stem/progenitor cells derived from the cochlear sensory epithelium give rise to spheres with distinct morphologies and features.
    Diensthuber M; Oshima K; Heller S
    J Assoc Res Otolaryngol; 2009 Jun; 10(2):173-90. PubMed ID: 19247714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulating cell cycle regulation in the mature cochlea.
    Minoda R; Izumikawa M; Kawamoto K; Zhang H; Raphael Y
    Hear Res; 2007 Oct; 232(1-2):44-51. PubMed ID: 17658230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a unique cell population marked by transgene expression in the adult cochlea of nestin-CreER(T2)/tdTomato-reporter mice.
    Chow CL; Guo W; Trivedi P; Zhao X; Gubbels SP
    J Comp Neurol; 2015 Jul; 523(10):1474-87. PubMed ID: 25611038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of sphere-forming capabilities of the cochlear stem cells derived from apical, middle and basal turns of murine organ of Corti.
    Lou X; Xie J; Wang X; Yang L; Zhang Y
    Neurosci Lett; 2014 Sep; 579():1-6. PubMed ID: 25016152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nestin expression and reactive phenomena in the mouse cochlea after kanamycin ototoxicity.
    Martone T; Giordano P; Dagna F; Carulli D; Albera R; Rossi F
    Eur J Neurosci; 2014 Jun; 39(11):1729-41. PubMed ID: 24689961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Nestin Expression in the Developing and Adult Mouse Inner Ear.
    Chow CL; Trivedi P; Pyle MP; Matulle JT; Fettiplace R; Gubbels SP
    Stem Cells Dev; 2016 Oct; 25(19):1419-32. PubMed ID: 27474107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.