BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 22123061)

  • 1. The impact of glycosylation on monoclonal antibody conformation and stability.
    Zheng K; Bantog C; Bayer R
    MAbs; 2011; 3(6):568-76. PubMed ID: 22123061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of glycosylation pattern on the molecular properties of monoclonal antibodies.
    Zheng K; Yarmarkovich M; Bantog C; Bayer R; Patapoff TW
    MAbs; 2014; 6(3):649-58. PubMed ID: 24662970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of N-glycosylation on conformation and stability of immunoglobulin Y from egg yolk.
    Sheng L; He Z; Chen J; Liu Y; Ma M; Cai Z
    Int J Biol Macromol; 2017 Mar; 96():129-136. PubMed ID: 27988289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of N-glycosylation on effector functions and thermal stability of glycoengineered IgG1 monoclonal antibody with homogeneous glycoforms.
    Wada R; Matsui M; Kawasaki N
    MAbs; 2019; 11(2):350-372. PubMed ID: 30466347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycosylation of human IgG-Fc: influences on structure revealed by differential scanning micro-calorimetry.
    Ghirlando R; Lund J; Goodall M; Jefferis R
    Immunol Lett; 1999 May; 68(1):47-52. PubMed ID: 10397155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of non-glycosylated recombinant proteins in Nicotiana benthamiana plants by co-expressing bacterial PNGase F.
    Mamedov T; Ghosh A; Jones RM; Mett V; Farrance CE; Musiychuk K; Horsey A; Yusibov V
    Plant Biotechnol J; 2012 Sep; 10(7):773-82. PubMed ID: 22520228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of IgG1 conformation and conformational dynamics by hydrogen/deuterium exchange mass spectrometry.
    Houde D; Arndt J; Domeier W; Berkowitz S; Engen JR
    Anal Chem; 2009 Apr; 81(7):2644-51. PubMed ID: 19265386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of glycan modification on IgG1 biochemical and biophysical properties.
    Pawlowski JW; Bajardi-Taccioli A; Houde D; Feschenko M; Carlage T; Kaltashov IA
    J Pharm Biomed Anal; 2018 Mar; 151():133-144. PubMed ID: 29324282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NS0 cells.
    Hills AE; Patel A; Boyd P; James DC
    Biotechnol Bioeng; 2001 Oct; 75(2):239-51. PubMed ID: 11536148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deglycosylation of ovalbumin prohibits formation of a heat-stable conformer.
    de Groot J; Kosters HA; de Jongh HH
    Biotechnol Bioeng; 2007 Jul; 97(4):735-41. PubMed ID: 17154314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of IgG1 with asymmetrical Fc glycosylation.
    Ha S; Ou Y; Vlasak J; Li Y; Wang S; Vo K; Du Y; Mach A; Fang Y; Zhang N
    Glycobiology; 2011 Aug; 21(8):1087-96. PubMed ID: 21470983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlations between changes in conformational dynamics and physical stability in a mutant IgG1 mAb engineered for extended serum half-life.
    Majumdar R; Esfandiary R; Bishop SM; Samra HS; Middaugh CR; Volkin DB; Weis DD
    MAbs; 2015; 7(1):84-95. PubMed ID: 25524268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles-Part 2: Mass spectrometric methods.
    Reusch D; Haberger M; Falck D; Peter B; Maier B; Gassner J; Hook M; Wagner K; Bonnington L; Bulau P; Wuhrer M
    MAbs; 2015; 7(4):732-42. PubMed ID: 25996192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-Angle Effector Function Analysis of Human Monoclonal IgG Glycovariants.
    Dashivets T; Thomann M; Rueger P; Knaupp A; Buchner J; Schlothauer T
    PLoS One; 2015; 10(12):e0143520. PubMed ID: 26657484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational changes of recombinant monoclonal antibodies by limited proteolytic digestion, stable isotope labeling, and liquid chromatography-mass spectrometry.
    Ponniah G; Nowak C; Kita A; Cheng G; Kori Y; Liu H
    Anal Biochem; 2016 Mar; 497():1-7. PubMed ID: 26747642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidation of degradants in acidic peak of cation exchange chromatography in an IgG1 monoclonal antibody formed on long-term storage in a liquid formulation.
    Gandhi S; Ren D; Xiao G; Bondarenko P; Sloey C; Ricci MS; Krishnan S
    Pharm Res; 2012 Jan; 29(1):209-24. PubMed ID: 21845507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycosylation of bombesin receptors: characterization, effect on binding, and G-protein coupling.
    Kusui T; Benya RV; Battey JF; Jensen RT
    Biochemistry; 1994 Nov; 33(44):12968-80. PubMed ID: 7947701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Traditional 2-AB Fluorescence LC-MS/MS and Automated LC-MS for the Comparative Glycan Analysis of Monoclonal Antibodies.
    Schiel JE; Rogstad SM; Boyne MT
    J Pharm Sci; 2015 Aug; 104(8):2464-72. PubMed ID: 26053232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of glycosylation on the thermal stability and effector function expression of human IgG1-Fc: properties of a series of truncated glycoforms.
    Mimura Y; Church S; Ghirlando R; Ashton PR; Dong S; Goodall M; Lund J; Jefferis R
    Mol Immunol; 2000; 37(12-13):697-706. PubMed ID: 11275255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparisons of the glycosylation of a monoclonal antibody produced under nominally identical cell culture conditions in two different bioreactors.
    Kunkel JP; Jan DC; Butler M; Jamieson JC
    Biotechnol Prog; 2000; 16(3):462-70. PubMed ID: 10835250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.