These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 2212308)

  • 41. Growth of L(f2--f1) and L(2f1--f2) with input level: influence of f2/f1.
    Humes LE
    Hear Res; 1980 Mar; 2(2):115-22. PubMed ID: 7364667
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evidence for two discrete sources of 2f1-f2 distortion-product otoacoustic emission in rabbit. II: Differential physiological vulnerability.
    Whitehead ML; Lonsbury-Martin BL; Martin GK
    J Acoust Soc Am; 1992 Nov; 92(5):2662-82. PubMed ID: 1479129
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Contralateral acoustic stimulation modulates low-frequency biasing of DPOAE: efferent influence on cochlear amplifier operating state?
    Abel C; Wittekindt A; Kössl M
    J Neurophysiol; 2009 May; 101(5):2362-71. PubMed ID: 19279155
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Measures of auditory brain-stem responses, distortion product otoacoustic emissions, hair cell loss, and forward masked tuning curves in the waltzing guinea pig.
    Canlon B; Marklund K; Borg E
    J Acoust Soc Am; 1993 Dec; 94(6):3232-43. PubMed ID: 8300958
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-Frequency Distortion-Product Otoacoustic Emission Repeatability in a Patient Population.
    Dreisbach L; Zettner E; Chang Liu M; Meuel Fernhoff C; MacPhee I; Boothroyd A
    Ear Hear; 2018; 39(1):85-100. PubMed ID: 28678077
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two-tone distortion at different longitudinal locations on the basilar membrane.
    He W; Nuttall AL; Ren T
    Hear Res; 2007 Jun; 228(1-2):112-22. PubMed ID: 17353104
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gender, music, and distortion product otoacoustic emission components.
    Torre P; Grace J; Hansen C; Millman P; Martin H
    Ear Hear; 2013; 34(6):e74-81. PubMed ID: 23698624
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Level dependence of the nonlinear-distortion component of distortion-product otoacoustic emissions in humans.
    Zelle D; Thiericke JP; Dalhoff E; Gummer AW
    J Acoust Soc Am; 2015 Dec; 138(6):3475-90. PubMed ID: 26723305
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Distortion product emissions in humans. I. Basic properties in normally hearing subjects.
    Lonsbury-Martin BL; Harris FP; Stagner BB; Hawkins MD; Martin GK
    Ann Otol Rhinol Laryngol Suppl; 1990 May; 147():3-14. PubMed ID: 2110797
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Use of acoustic distortion products in clinical diagnosis. The site of origin of otoacoustic emissions in the inner ear].
    Plinkert PK; Harris FP; Probst R
    HNO; 1993 Jul; 41(7):339-44. PubMed ID: 8376180
    [TBL] [Abstract][Full Text] [Related]  

  • 51. On the dependence of (f2-f1) difference tones on subject and on additional masker.
    Zwicker E; Martner O
    J Acoust Soc Am; 1990 Sep; 88(3):1351-8. PubMed ID: 2229670
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Distortion-product otoacoustic emissions measured at high frequencies in humans.
    Dreisbach LE; Siegel JH
    J Acoust Soc Am; 2001 Nov; 110(5 Pt 1):2456-69. PubMed ID: 11757935
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of altering organ of Corti on cochlear distortion products f2 - f1 and 2f1 - f2.
    Siegel JH; Kim DO; Molnar CE
    J Neurophysiol; 1982 Feb; 47(2):303-28. PubMed ID: 7062102
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Acoustic distortion products (ADP) from the ears of term infants and young adults using low stimulus levels.
    Brown AM; Sheppard SL; Russell PT
    Br J Audiol; 1994; 28(4-5):273-80. PubMed ID: 7735156
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Slopes of distortion-product otoacoustic emission growth curves corrected for noise-floor levels.
    Nelson DA; Zhou JZ
    J Acoust Soc Am; 1996 Jan; 99(1):468-74. PubMed ID: 8568034
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Distortion product otoacoustic emission generation mechanisms and their dependence on stimulus level and primary frequency ratio.
    Botti T; Sisto R; Sanjust F; Moleti A; D'Amato L
    J Acoust Soc Am; 2016 Feb; 139(2):658-73. PubMed ID: 26936550
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stimulus ratio dependence of low-frequency distortion-product otoacoustic emissions in humans.
    Christensen AT; Ordoñez R; Hammershøi D
    J Acoust Soc Am; 2015 Feb; 137(2):679-89. PubMed ID: 25698003
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. II. Interrelations between multicomponent DPOAEs, tone-burst-evoked OAEs, and spontaneous OAEs.
    Moulin A
    J Acoust Soc Am; 2000 Mar; 107(3):1471-86. PubMed ID: 10738802
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cancellation level and phase of the (f2-f1) distortion product.
    Humes LE
    J Acoust Soc Am; 1985 Oct; 78(4):1245-51. PubMed ID: 4056218
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ear canal acoustic distortion at 2f1-f2 from human ears: relation to other emissions and perceived combination tones.
    Furst M; Rabinowitz WM; Zurek PM
    J Acoust Soc Am; 1988 Jul; 84(1):215-21. PubMed ID: 3411050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.