These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 2212310)

  • 1. Synchronization of spontaneous otoacoustic emissions to a 2f1-f2 distortion product.
    van Dijk P; Wit HP
    J Acoust Soc Am; 1990 Aug; 88(2):850-6. PubMed ID: 2212310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for two discrete sources of 2f1-f2 distortion-product otoacoustic emission in rabbit: I. Differential dependence on stimulus parameters.
    Whitehead ML; Lonsbury-Martin BL; Martin GK
    J Acoust Soc Am; 1992 Mar; 91(3):1587-607. PubMed ID: 1564196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of acoustic distortion reveals underlying similarities between human and rodent mechanical responses.
    Brown AM; Gaskill SA
    J Acoust Soc Am; 1990 Aug; 88(2):840-9. PubMed ID: 2212309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of systematic primary-tone level variation L2-L1 on the acoustic distortion product emission 2f1-f2 in normal human ears.
    Hauser R; Probst R
    J Acoust Soc Am; 1991 Jan; 89(1):280-6. PubMed ID: 2002169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-tone distortion on the basilar membrane of the chinchilla cochlea.
    Robles L; Ruggero MA; Rich NC
    J Neurophysiol; 1997 May; 77(5):2385-99. PubMed ID: 9163365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2f1-f2 distortion product otoacoustic emissions in White Leghorn chickens (Gallus domesticus): effects of frequency ratio and relative level.
    Burkard R; Salvi R; Chen L
    Audiol Neurootol; 1996; 1(4):197-213. PubMed ID: 9390802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of spontaneous otoacoustic emissions (SOAE) on acoustic distortion product input/output functions: does the medial efferent system act differently in the vicinity of an SOAE?
    Moulin A; Collet L; Morgon A
    Acta Otolaryngol; 1992; 112(2):210-4. PubMed ID: 1604981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The behavior of the acoustic distortion product, 2f1-f2, from the human ear and its relation to auditory sensitivity.
    Gaskill SA; Brown AM
    J Acoust Soc Am; 1990 Aug; 88(2):821-39. PubMed ID: 2212308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effects of short-term tone exposure on DPOAEs].
    Shi Y; Jiang S; Gu R
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1997 Feb; 32(1):41-4. PubMed ID: 10743127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Use of acoustic distortion products in clinical diagnosis. The site of origin of otoacoustic emissions in the inner ear].
    Plinkert PK; Harris FP; Probst R
    HNO; 1993 Jul; 41(7):339-44. PubMed ID: 8376180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An alternate approach to constructing distortion product otoacoustic emission (DPOAE) suppression tuning curves.
    Johnson TA; Neely ST; Dierking DM; Hoover BM; Gorga MP
    J Acoust Soc Am; 2004 Dec; 116(6):3263-6. PubMed ID: 15658675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear phenomena as observed in the ear canal and at the auditory nerve.
    Fahey PF; Allen JB
    J Acoust Soc Am; 1985 Feb; 77(2):599-612. PubMed ID: 3973231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Suppression tuning characteristics of the 2f1-f2 distortion product in cochlear microphonics and otoacoustic emissions].
    Fujimura K; Yoshida M; Makishima K
    Nihon Jibiinkoka Gakkai Kaiho; 1997 Aug; 100(8):839-45. PubMed ID: 9293764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distortion product otoacoustic emission (2f1-f2) suppression in 3-month-old infants: evidence for postnatal maturation of human cochlear function?
    Abdala C
    J Acoust Soc Am; 2004 Dec; 116(6):3572-80. PubMed ID: 15658708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of common stimulus parameters on distortion product otoacoustic emission fine structure.
    Johnson TA; Baranowski LG
    Ear Hear; 2012; 33(2):239-49. PubMed ID: 21918451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive response to low-frequency cochlear distortion products in the auditory midbrain.
    Abel C; Kössl M
    J Neurophysiol; 2009 Mar; 101(3):1560-74. PubMed ID: 19036870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of furosemide on distortion product otoacoustic emissions and on neuronal responses in the anteroventral cochlear nucleus.
    Rübsamen R; Mills DM; Rubel EW
    J Neurophysiol; 1995 Oct; 74(4):1628-38. PubMed ID: 8989399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of continuous versus interrupted noise exposures on distortion product otoacoustic emissions in guinea pigs.
    Chang KW; Norton SJ
    Hear Res; 1996 Jul; 96(1-2):1-12. PubMed ID: 8817301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cochlear nonlinearities inferred from two-tone distortion products in the ear canal of the alligator lizard.
    Rosowski JJ; Peake WT; White JR
    Hear Res; 1984 Feb; 13(2):141-58. PubMed ID: 6715262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine structure of the 2 f1-f2 acoustic distortion products: effects of primary level and frequency ratios.
    He N; Schmiedt RA
    J Acoust Soc Am; 1997 Jun; 101(6):3554-65. PubMed ID: 9193044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.