These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 2212310)

  • 21. Indications of different distortion product otoacoustic emission mechanisms from a detailed f1,f2 area study.
    Knight RD; Kemp DT
    J Acoust Soc Am; 2000 Jan; 107(1):457-73. PubMed ID: 10641654
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of contralateral sound stimulation on the distortion product 2F1-F2: evidence that the medial efferent system is involved.
    Puel JL; Rebillard G
    J Acoust Soc Am; 1990 Apr; 87(4):1630-5. PubMed ID: 2341667
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two-tone distortion at different longitudinal locations on the basilar membrane.
    He W; Nuttall AL; Ren T
    Hear Res; 2007 Jun; 228(1-2):112-22. PubMed ID: 17353104
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phase delay measurements of distortion product otoacoustic emissions at 2f1-f2 and 2f2-f1 in human ears.
    Wable J; Collet L; Chéry-Croze S
    J Acoust Soc Am; 1996 Oct; 100(4 Pt 1):2228-35. PubMed ID: 8865631
    [TBL] [Abstract][Full Text] [Related]  

  • 25. One source for distortion product otoacoustic emissions generated by low- and high-level primaries.
    Lukashkin AN; Lukashkina VA; Russell IJ
    J Acoust Soc Am; 2002 Jun; 111(6):2740-8. PubMed ID: 12083209
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distortion product otoacoustic emission (2f1-f2) amplitude as a function of f2/f1 frequency ratio and primary tone level separation in human adults and neonates.
    Abdala C
    J Acoust Soc Am; 1996 Dec; 100(6):3726-40. PubMed ID: 8969474
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cochlear compression: effects of low-frequency biasing on quadratic distortion product otoacoustic emission.
    Bian L
    J Acoust Soc Am; 2004 Dec; 116(6):3559-71. PubMed ID: 15658707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distortion-product otoacoustic emissions measured at high frequencies in humans.
    Dreisbach LE; Siegel JH
    J Acoust Soc Am; 2001 Nov; 110(5 Pt 1):2456-69. PubMed ID: 11757935
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of cochlear function in mice: distortion-product otoacoustic emissions.
    Martin GK; Stagner BB; Lonsbury-Martin BL
    Curr Protoc Neurosci; 2006 Feb; Chapter 8():Unit8.21C. PubMed ID: 18428646
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Manifestations of intense noise stimulation on spontaneous otoacoustic emission and threshold microstructure: experiment and model.
    Furst M; Reshef I; Attias J
    J Acoust Soc Am; 1992 Feb; 91(2):1003-14. PubMed ID: 1313463
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Locus of generation for the 2f1-f2 vs 2f2-f1 distortion-product otoacoustic emissions in normal-hearing humans revealed by suppression tuning, onset latencies, and amplitude correlations.
    Martin GK; Jassir D; Stagner BB; Whitehead ML; Lonsbury-Martin BL
    J Acoust Soc Am; 1998 Apr; 103(4):1957-71. PubMed ID: 9566319
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of hearing loss using 2f2-f1 and 2f1-f2 distortion-product otoacoustic emissions.
    Fitzgerald TS; Prieve BA
    J Speech Lang Hear Res; 2005 Oct; 48(5):1165-86. PubMed ID: 16411804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distortion product otoacoustic emission test performance when both 2f1-f2 and 2f2-f1 are used to predict auditory status.
    Gorga MP; Nelson K; Davis T; Dorn PA; Neely ST
    J Acoust Soc Am; 2000 Apr; 107(4):2128-35. PubMed ID: 10790038
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Are spontaneous otoacoustic emissions generated by self-sustained cochlear oscillators?
    Talmadge CL; Tubis A; Wit HP; Long GR
    J Acoust Soc Am; 1991 May; 89(5):2391-9. PubMed ID: 1860998
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acoustic distortion as a measure of frequency selectivity: relation to psychophysical equivalent rectangular bandwidth.
    Brown AM; Gaskill SA; Carlyon RP; Williams DM
    J Acoust Soc Am; 1993 Jun; 93(6):3291-7. PubMed ID: 8326057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. II. Interrelations between multicomponent DPOAEs, tone-burst-evoked OAEs, and spontaneous OAEs.
    Moulin A
    J Acoust Soc Am; 2000 Mar; 107(3):1471-86. PubMed ID: 10738802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural correlates of cubic difference tones in the medial geniculate body of the cat.
    Horner K; de Ribaupierre Y; de Ribaupierre F
    Hear Res; 1983 Sep; 11(3):343-57. PubMed ID: 6630087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contralateral acoustic stimulation modulates low-frequency biasing of DPOAE: efferent influence on cochlear amplifier operating state?
    Abel C; Wittekindt A; Kössl M
    J Neurophysiol; 2009 May; 101(5):2362-71. PubMed ID: 19279155
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ear canal acoustic distortion at 2f1-f2 from human ears: relation to other emissions and perceived combination tones.
    Furst M; Rabinowitz WM; Zurek PM
    J Acoust Soc Am; 1988 Jul; 84(1):215-21. PubMed ID: 3411050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evoked acoustic emissions and cochlear microphonics in the mustache bat, Pteronotus parnellii.
    Kössl M; Vater M
    Hear Res; 1985; 19(2):157-70. PubMed ID: 4055535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.