BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 22123429)

  • 1. Does the oxidative stress theory of aging explain longevity differences in birds? I. Mitochondrial ROS production.
    Montgomery MK; Hulbert AJ; Buttemer WA
    Exp Gerontol; 2012 Mar; 47(3):203-10. PubMed ID: 22123429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does the oxidative stress theory of aging explain longevity differences in birds? II. Antioxidant systems and oxidative damage.
    Montgomery MK; Buttemer WA; Hulbert AJ
    Exp Gerontol; 2012 Mar; 47(3):211-22. PubMed ID: 22230489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The long life of birds: the rat-pigeon comparison revisited.
    Montgomery MK; Hulbert AJ; Buttemer WA
    PLoS One; 2011; 6(8):e24138. PubMed ID: 21904609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-related increase of reactive oxygen generation in the brains of mammals and birds: is reactive oxygen a signaling molecule to determine the aging process and life span?
    Sasaki T; Unno K; Tahara S; Kaneko T
    Geriatr Gerontol Int; 2010 Jul; 10 Suppl 1():S10-24. PubMed ID: 20590825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle.
    Hütter E; Skovbro M; Lener B; Prats C; Rabøl R; Dela F; Jansen-Dürr P
    Aging Cell; 2007 Apr; 6(2):245-56. PubMed ID: 17376148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low mitochondrial free radical production per unit O2 consumption can explain the simultaneous presence of high longevity and high aerobic metabolic rate in birds.
    Barja G; Cadenas S; Rojas C; Pérez-Campo R; López-Torres M
    Free Radic Res; 1994 Oct; 21(5):317-27. PubMed ID: 7842141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of longevity and oxidative stress by nutritional interventions: role of methionine restriction.
    Sanchez-Roman I; Barja G
    Exp Gerontol; 2013 Oct; 48(10):1030-42. PubMed ID: 23454735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncoupling the relationship between fatty acids and longevity.
    Kua CH
    IUBMB Life; 2006 Mar; 58(3):153-5. PubMed ID: 16766382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interspecific correlation between red blood cell mitochondrial ROS production, cardiolipin content and longevity in birds.
    Delhaye J; Salamin N; Roulin A; Criscuolo F; Bize P; Christe P
    Age (Dordr); 2016 Dec; 38(5-6):433-443. PubMed ID: 27572896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low hydrogen peroxide production in mitochondria of the long-lived Arctica islandica: underlying mechanisms for slow aging.
    Munro D; Pichaud N; Paquin F; Kemeid V; Blier PU
    Aging Cell; 2013 Aug; 12(4):584-92. PubMed ID: 23566066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of restricting amino acids except methionine on mitochondrial oxidative stress].
    Caro P; Gómez J; Sánchez I; López-Torres M; Barja G
    Rev Esp Geriatr Gerontol; 2009; 44(4):194-9. PubMed ID: 19577342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial free radical production and aging in mammals and birds.
    Barja G
    Ann N Y Acad Sci; 1998 Nov; 854():224-38. PubMed ID: 9928433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vascular superoxide and hydrogen peroxide production and oxidative stress resistance in two closely related rodent species with disparate longevity.
    Csiszar A; Labinskyy N; Zhao X; Hu F; Serpillon S; Huang Z; Ballabh P; Levy RJ; Hintze TH; Wolin MS; Austad SN; Podlutsky A; Ungvari Z
    Aging Cell; 2007 Dec; 6(6):783-97. PubMed ID: 17925005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins.
    Sanz A; Caro P; Ayala V; Portero-Otin M; Pamplona R; Barja G
    FASEB J; 2006 Jun; 20(8):1064-73. PubMed ID: 16770005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial uncoupling as a regulator of life-history trajectories in birds: an experimental study in the zebra finch.
    Stier A; Bize P; Roussel D; Schull Q; Massemin S; Criscuolo F
    J Exp Biol; 2014 Oct; 217(Pt 19):3579-89. PubMed ID: 25063856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing the 'free radical theory of aging' hypothesis: physiological differences in long-lived and short-lived colubrid snakes.
    Robert KA; Brunet-Rossinni A; Bronikowski AM
    Aging Cell; 2007 Jun; 6(3):395-404. PubMed ID: 17381550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging.
    Wang CH; Wu SB; Wu YT; Wei YH
    Exp Biol Med (Maywood); 2013 May; 238(5):450-60. PubMed ID: 23856898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic rate and membrane fatty acid composition in birds: a comparison between long-living parrots and short-living fowl.
    Montgomery MK; Hulbert AJ; Buttemer WA
    J Comp Physiol B; 2012 Jan; 182(1):127-37. PubMed ID: 21766191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of lifespan by the mitochondrial electron transport chain: reactive oxygen species-dependent and reactive oxygen species-independent mechanisms.
    Scialo F; Mallikarjun V; Stefanatos R; Sanz A
    Antioxid Redox Signal; 2013 Dec; 19(16):1953-69. PubMed ID: 22938137
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.