These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 22123966)

  • 21. MicroRNA-276a functions in ellipsoid body and mushroom body neurons for naive and conditioned olfactory avoidance in Drosophila.
    Li W; Cressy M; Qin H; Fulga T; Van Vactor D; Dubnau J
    J Neurosci; 2013 Mar; 33(13):5821-33. PubMed ID: 23536094
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamics of learning-related cAMP signaling and stimulus integration in the Drosophila olfactory pathway.
    Tomchik SM; Davis RL
    Neuron; 2009 Nov; 64(4):510-21. PubMed ID: 19945393
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Brain organization and the roots of anticipation in Drosophila olfactory conditioning.
    Newquist G
    Neurosci Biobehav Rev; 2011 Apr; 35(5):1166-74. PubMed ID: 21168436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Olfactory learning in Drosophila.
    Busto GU; Cervantes-Sandoval I; Davis RL
    Physiology (Bethesda); 2010 Dec; 25(6):338-46. PubMed ID: 21186278
    [TBL] [Abstract][Full Text] [Related]  

  • 25. D1 dopamine receptor dDA1 is required in the mushroom body neurons for aversive and appetitive learning in Drosophila.
    Kim YC; Lee HG; Han KA
    J Neurosci; 2007 Jul; 27(29):7640-7. PubMed ID: 17634358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aging impairs intermediate-term behavioral memory by disrupting the dorsal paired medial neuron memory trace.
    Tonoki A; Davis RL
    Proc Natl Acad Sci U S A; 2012 Apr; 109(16):6319-24. PubMed ID: 22474396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temporally specific engagement of distinct neuronal circuits regulating olfactory habituation in
    Semelidou O; Acevedo SF; Skoulakis EM
    Elife; 2018 Dec; 7():. PubMed ID: 30576281
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synapsin determines memory strength after punishment- and relief-learning.
    Niewalda T; Michels B; Jungnickel R; Diegelmann S; Kleber J; Kähne T; Gerber B
    J Neurosci; 2015 May; 35(19):7487-502. PubMed ID: 25972175
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glia transmit negative valence information during aversive learning in
    Miyashita T; Murakami K; Kikuchi E; Ofusa K; Mikami K; Endo K; Miyaji T; Moriyama S; Konno K; Muratani H; Moriyama Y; Watanabe M; Horiuchi J; Saitoe M
    Science; 2023 Dec; 382(6677):eadf7429. PubMed ID: 38127757
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The cyclic AMP system and Drosophila learning.
    Davis RL; Cherry J; Dauwalder B; Han PL; Skoulakis E
    Mol Cell Biochem; 1995; 149-150():271-8. PubMed ID: 8569740
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Consolidated and labile odor memory are separately encoded within the Drosophila brain.
    Scheunemann L; Jost E; Richlitzki A; Day JP; Sebastian S; Thum AS; Efetova M; Davies SA; Schwärzel M
    J Neurosci; 2012 Nov; 32(48):17163-71. PubMed ID: 23197709
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Active Protection: Learning-Activated Raf/MAPK Activity Protects Labile Memory from Rac1-Independent Forgetting.
    Zhang X; Li Q; Wang L; Liu ZJ; Zhong Y
    Neuron; 2018 Apr; 98(1):142-155.e4. PubMed ID: 29551489
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiple memory traces for olfactory reward learning in Drosophila.
    Thum AS; Jenett A; Ito K; Heisenberg M; Tanimoto H
    J Neurosci; 2007 Oct; 27(41):11132-8. PubMed ID: 17928455
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Traces of Drosophila memory.
    Davis RL
    Neuron; 2011 Apr; 70(1):8-19. PubMed ID: 21482352
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Specific dopaminergic neurons for the formation of labile aversive memory.
    Aso Y; Siwanowicz I; Bräcker L; Ito K; Kitamoto T; Tanimoto H
    Curr Biol; 2010 Aug; 20(16):1445-51. PubMed ID: 20637624
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synaptic depression induced by postsynaptic cAMP production in the Drosophila mushroom body calyx.
    Sato S; Ueno K; Saitoe M; Sakai T
    J Physiol; 2018 Jun; 596(12):2447-2461. PubMed ID: 29659025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Olfactory conditioning of proboscis activity in Drosophila melanogaster.
    Chabaud MA; Devaud JM; Pham-Delègue MH; Preat T; Kaiser L
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Dec; 192(12):1335-48. PubMed ID: 16964495
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Habituation of an odorant-induced startle response in Drosophila.
    Cho W; Heberlein U; Wolf FW
    Genes Brain Behav; 2004 Jun; 3(3):127-37. PubMed ID: 15140008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae.
    Widmann A; Artinger M; Biesinger L; Boepple K; Peters C; Schlechter J; Selcho M; Thum AS
    PLoS Genet; 2016 Oct; 12(10):e1006378. PubMed ID: 27768692
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Requirement for nuclear calcium signaling in Drosophila long-term memory.
    Weislogel JM; Bengtson CP; Müller MK; Hörtzsch JN; Bujard M; Schuster CM; Bading H
    Sci Signal; 2013 May; 6(274):ra33. PubMed ID: 23652205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.