BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 22124155)

  • 1. Rhythmic interaction between Period1 mRNA and hnRNP Q leads to circadian time-dependent translation.
    Lee KH; Woo KC; Kim DY; Kim TD; Shin J; Park SM; Jang SK; Kim KT
    Mol Cell Biol; 2012 Feb; 32(3):717-28. PubMed ID: 22124155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Internal ribosomal entry site-mediated translation is important for rhythmic PERIOD1 expression.
    Lee KH; Kim SH; Kim DY; Kim S; Kim KT
    PLoS One; 2012; 7(5):e37936. PubMed ID: 22662251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. hnRNP Q mediates a phase-dependent translation-coupled mRNA decay of mouse Period3.
    Kim DY; Kwak E; Kim SH; Lee KH; Woo KC; Kim KT
    Nucleic Acids Res; 2011 Nov; 39(20):8901-14. PubMed ID: 21785138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PTBP1 Positively Regulates the Translation of Circadian Clock Gene,
    Kim W; Shin JC; Lee KH; Kim KT
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32967200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The RNA-binding protein hnRNP Q represses translation of the clock gene
    Jung Y; Ryu HG; Kim SW; Lee KH; Gu S; Yi H; Ku HO; Jang SK; Kim KT
    J Biol Chem; 2019 May; 294(19):7682-7691. PubMed ID: 30948510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhythmic control of AANAT translation by hnRNP Q in circadian melatonin production.
    Kim TD; Woo KC; Cho S; Ha DC; Jang SK; Kim KT
    Genes Dev; 2007 Apr; 21(7):797-810. PubMed ID: 17403780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. hnRNP Q and PTB modulate the circadian oscillation of mouse Rev-erb alpha via IRES-mediated translation.
    Kim DY; Woo KC; Lee KH; Kim TD; Kim KT
    Nucleic Acids Res; 2010 Nov; 38(20):7068-78. PubMed ID: 20576698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LARK activates posttranscriptional expression of an essential mammalian clock protein, PERIOD1.
    Kojima S; Matsumoto K; Hirose M; Shimada M; Nagano M; Shigeyoshi Y; Hoshino S; Ui-Tei K; Saigo K; Green CB; Sakaki Y; Tei H
    Proc Natl Acad Sci U S A; 2007 Feb; 104(6):1859-64. PubMed ID: 17264215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhythmic control of mRNA stability modulates circadian amplitude of mouse Period3 mRNA.
    Kim SH; Lee KH; Kim DY; Kwak E; Kim S; Kim KT
    J Neurochem; 2015 Mar; 132(6):642-56. PubMed ID: 25581122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneous nuclear ribonucleoprotein A1 regulates rhythmic synthesis of mouse Nfil3 protein via IRES-mediated translation.
    Kim HJ; Lee HR; Seo JY; Ryu HG; Lee KH; Kim DY; Kim KT
    Sci Rep; 2017 Feb; 7():42882. PubMed ID: 28220845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhythmic U2af26 alternative splicing controls PERIOD1 stability and the circadian clock in mice.
    Preußner M; Wilhelmi I; Schultz AS; Finkernagel F; Michel M; Möröy T; Heyd F
    Mol Cell; 2014 May; 54(4):651-62. PubMed ID: 24837677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional analysis of 3' untranslated region of mouse Period1 mRNA.
    Kojima S; Hirose M; Tokunaga K; Sakaki Y; Tei H
    Biochem Biophys Res Commun; 2003 Jan; 301(1):1-7. PubMed ID: 12535631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas-mediated Fubp1 silencing disrupts circadian oscillation of Per1 protein via downregulating Syncrip expression.
    Kim TJ; Sung JH; Shin JC; Kim DY
    Cell Biol Int; 2020 Feb; 44(2):424-432. PubMed ID: 31535751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mouse Period1 (mPER1) acts as a circadian adaptor to entrain the oscillator to environmental light/dark cycles by regulating mPER2 protein.
    Masubuchi S; Kataoka N; Sassone-Corsi P; Okamura H
    J Neurosci; 2005 May; 25(19):4719-24. PubMed ID: 15888647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock.
    Zheng B; Albrecht U; Kaasik K; Sage M; Lu W; Vaishnav S; Li Q; Sun ZS; Eichele G; Bradley A; Lee CC
    Cell; 2001 Jun; 105(5):683-94. PubMed ID: 11389837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames.
    Janich P; Arpat AB; Castelo-Szekely V; Lopes M; Gatfield D
    Genome Res; 2015 Dec; 25(12):1848-59. PubMed ID: 26486724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HnRNP Q Has a Suppressive Role in the Translation of Mouse Cryptochrome1.
    Lim I; Jung Y; Kim DY; Kim KT
    PLoS One; 2016; 11(7):e0159018. PubMed ID: 27392095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock.
    Bae K; Jin X; Maywood ES; Hastings MH; Reppert SM; Weaver DR
    Neuron; 2001 May; 30(2):525-36. PubMed ID: 11395012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new mammalian period gene predominantly expressed in the suprachiasmatic nucleus.
    Takumi T; Matsubara C; Shigeyoshi Y; Taguchi K; Yagita K; Maebayashi Y; Sakakida Y; Okumura K; Takashima N; Okamura H
    Genes Cells; 1998 Mar; 3(3):167-76. PubMed ID: 9619629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of haloperidol on mPer1 gene expression in mouse suprachiasmatic nuclei.
    Viyoch J; Matsunaga N; Yoshida M; To H; Higuchi S; Ohdo S
    J Biol Chem; 2005 Feb; 280(8):6309-15. PubMed ID: 15590637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.