BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22124329)

  • 1. Monoamines and neuropeptides interact to inhibit aversive behaviour in Caenorhabditis elegans.
    Mills H; Wragg R; Hapiak V; Castelletto M; Zahratka J; Harris G; Summers P; Korchnak A; Law W; Bamber B; Komuniecki R
    EMBO J; 2012 Feb; 31(3):667-78. PubMed ID: 22124329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antagonism between neuropeptides and monoamines in a distributed circuit for pathogen avoidance.
    Marquina-Solis J; Feng L; Vandewyer E; Beets I; Hawk J; Colón-Ramos DA; Yu J; Fox BW; Schroeder FC; Bargmann CI
    Cell Rep; 2024 Apr; 43(4):114042. PubMed ID: 38573858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The C. elegans D2-like dopamine receptor DOP-3 decreases behavioral sensitivity to the olfactory stimulus 1-octanol.
    Ezak MJ; Ferkey DM
    PLoS One; 2010 Mar; 5(3):e9487. PubMed ID: 20209143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural signal propagation atlas of Caenorhabditis elegans.
    Randi F; Sharma AK; Dvali S; Leifer AM
    Nature; 2023 Nov; 623(7986):406-414. PubMed ID: 37914938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opiates Modulate Noxious Chemical Nociception through a Complex Monoaminergic/Peptidergic Cascade.
    Mills H; Ortega A; Law W; Hapiak V; Summers P; Clark T; Komuniecki R
    J Neurosci; 2016 May; 36(20):5498-508. PubMed ID: 27194330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuropeptides amplify and focus the monoaminergic inhibition of nociception in Caenorhabditis elegans.
    Hapiak V; Summers P; Ortega A; Law WJ; Stein A; Komuniecki R
    J Neurosci; 2013 Aug; 33(35):14107-16. PubMed ID: 23986246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monoamines activate neuropeptide signaling cascades to modulate nociception in C. elegans: a useful model for the modulation of chronic pain?
    Komuniecki R; Harris G; Hapiak V; Wragg R; Bamber B
    Invert Neurosci; 2012 Jun; 12(1):53-61. PubMed ID: 22143253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction of octopamine and neuropeptides to slow aversive responses in C. elegans mimics the modulation of chronic pain in mammals.
    Mills H; Hapiak V; Harris G; Summers P; Komuniecki R
    Worm; 2012 Oct; 1(4):202-6. PubMed ID: 24058849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural Mechanisms for Evaluating Environmental Variability in Caenorhabditis elegans.
    Calhoun AJ; Tong A; Pokala N; Fitzpatrick JA; Sharpee TO; Chalasani SH
    Neuron; 2015 Apr; 86(2):428-41. PubMed ID: 25864633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serotonin differentially modulates Ca2+ transients and depolarization in a C. elegans nociceptor.
    Zahratka JA; Williams PD; Summers PJ; Komuniecki RW; Bamber BA
    J Neurophysiol; 2015 Feb; 113(4):1041-50. PubMed ID: 25411461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reciprocal inhibition between sensory ASH and ASI neurons modulates nociception and avoidance in Caenorhabditis elegans.
    Guo M; Wu TH; Song YX; Ge MH; Su CM; Niu WP; Li LL; Xu ZJ; Ge CL; Al-Mhanawi MT; Wu SP; Wu ZX
    Nat Commun; 2015 Jan; 6():5655. PubMed ID: 25585042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serotonin and octopamine in the nematode Caenorhabditis elegans.
    Horvitz HR; Chalfie M; Trent C; Sulston JE; Evans PD
    Science; 1982 May; 216(4549):1012-4. PubMed ID: 6805073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabotropic Glutamate Receptors: MODULATORS OF CONTEXT-DEPENDENT FEEDING BEHAVIOUR IN C. ELEGANS.
    Dillon J; Franks CJ; Murray C; Edwards RJ; Calahorro F; Ishihara T; Katsura I; Holden-Dye L; O'Connor V
    J Biol Chem; 2015 Jun; 290(24):15052-65. PubMed ID: 25869139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding a neural circuit controlling global animal state in C. elegans.
    Laurent P; Soltesz Z; Nelson GM; Chen C; Arellano-Carbajal F; Levy E; de Bono M
    Elife; 2015 Mar; 4():. PubMed ID: 25760081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemosensation of bacterial secondary metabolites modulates neuroendocrine signaling and behavior of C. elegans.
    Meisel JD; Panda O; Mahanti P; Schroeder FC; Kim DH
    Cell; 2014 Oct; 159(2):267-80. PubMed ID: 25303524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopamine modulation of avoidance behavior in Caenorhabditis elegans requires the NMDA receptor NMR-1.
    Baidya M; Genovez M; Torres M; Chao MY
    PLoS One; 2014; 9(8):e102958. PubMed ID: 25089710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serotonergic chemosensory neurons modify the C. elegans immune response by regulating G-protein signaling in epithelial cells.
    Anderson A; Laurenson-Schafer H; Partridge FA; Hodgkin J; McMullan R
    PLoS Pathog; 2013; 9(12):e1003787. PubMed ID: 24348250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of cys-loop receptor genes involved in inhibitory amine neurotransmission in parasitic and free living nematodes.
    Beech RN; Callanan MK; Rao VT; Dawe GB; Forrester SG
    Parasitol Int; 2013 Dec; 62(6):599-605. PubMed ID: 23602737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The FMRFamide-related neuropeptide FLP-20 is required in the mechanosensory neurons during memory for massed training in C. elegans.
    Li C; Timbers TA; Rose JK; Bozorgmehr T; McEwan A; Rankin CH
    Learn Mem; 2013 Jan; 20(2):103-8. PubMed ID: 23325727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuropeptide GPCRs in C. elegans.
    Frooninckx L; Van Rompay L; Temmerman L; Van Sinay E; Beets I; Janssen T; Husson SJ; Schoofs L
    Front Endocrinol (Lausanne); 2012; 3():167. PubMed ID: 23267347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.