These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 22124333)
1. Synthesis and characterization of maltose-based amphiphiles as supramolecular hydrogelators. Clemente MJ; Fitremann J; Mauzac M; Serrano JL; Oriol L Langmuir; 2011 Dec; 27(24):15236-47. PubMed ID: 22124333 [TBL] [Abstract][Full Text] [Related]
2. Structural polymorphism of hydrated monoacylated maltose glycolipids. Howe J; Garidel P; Wulf M; Gerber S; Milkereit G; Vill V; Roessle M; Brandenburg K Chem Phys Lipids; 2008 Sep; 155(1):31-7. PubMed ID: 18671955 [TBL] [Abstract][Full Text] [Related]
3. Structure and properties of cholesterol-based hydrogelators with varying hydrophilic terminals: biocompatibility and development of antibacterial soft nanocomposites. Dutta S; Kar T; Mandal D; Das PK Langmuir; 2013 Jan; 29(1):316-27. PubMed ID: 23214716 [TBL] [Abstract][Full Text] [Related]
4. Hydrophilic and amphiphilic polyethylene glycol-based hydrogels with tunable degradability prepared by "click" chemistry. Truong V; Blakey I; Whittaker AK Biomacromolecules; 2012 Dec; 13(12):4012-21. PubMed ID: 23134321 [TBL] [Abstract][Full Text] [Related]
5. Amphiphiles based on D-glucose: efficient low molecular weight gelators. Nandi S; Altenbach HJ; Jakob B; Lange K; Ihizane R; Schneider MP; Gün U; Mayer A Org Lett; 2012 Aug; 14(15):3826-9. PubMed ID: 22813401 [TBL] [Abstract][Full Text] [Related]
6. Head group modulated pH-responsive hydrogel of amino acid-based amphiphiles: entrapment and release of cytochrome c and vitamin B12. Shome A; Debnath S; Das PK Langmuir; 2008 Apr; 24(8):4280-8. PubMed ID: 18324868 [TBL] [Abstract][Full Text] [Related]
7. Enzymatic Hydrolysis-Responsive Supramolecular Hydrogels Composed of Maltose-Coupled Amphiphilic Ureas. Yoshisaki R; Kimura S; Yokoya M; Yamanaka M Chem Asian J; 2021 Jul; 16(14):1937-1941. PubMed ID: 34003592 [TBL] [Abstract][Full Text] [Related]
8. The high-throughput synthesis and phase characterisation of amphiphiles: a sweet case study. Feast GC; Hutt OE; Mulet X; Conn CE; Drummond CJ; Savage GP Chemistry; 2014 Mar; 20(10):2783-92. PubMed ID: 24677204 [TBL] [Abstract][Full Text] [Related]
9. Structure and properties of low molecular weight amphiphilic peptide hydrogelators. Mitra RN; Das D; Roy S; Das PK J Phys Chem B; 2007 Dec; 111(51):14107-13. PubMed ID: 18052148 [TBL] [Abstract][Full Text] [Related]
10. Phase diagrams of monoacylated amide-linked disaccharide glycolipids. Gerber S; Wulf M; Milkereit G; Vill V; Howe J; Roessle M; Garidel P; Gutsmann T; Brandenburg K Chem Phys Lipids; 2009 Apr; 158(2):118-30. PubMed ID: 19428356 [TBL] [Abstract][Full Text] [Related]
11. Copper-catalyzed azide-alkyne cycloaddition in the synthesis of polydiacetylene: "click glycoliposome" as biosensors for the specific detection of lectins. Leal MP; Assali M; Fernández I; Khiar N Chemistry; 2011 Feb; 17(6):1828-36. PubMed ID: 21274934 [TBL] [Abstract][Full Text] [Related]
12. Supramolecular assemblies of nucleoside phosphocholine amphiphiles. Moreau L; Barthélémy P; El Maataoui M; Grinstaff MW J Am Chem Soc; 2004 Jun; 126(24):7533-9. PubMed ID: 15198600 [TBL] [Abstract][Full Text] [Related]
13. "Click" chemistry in a supramolecular environment: stabilization of organogels by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. Díaz DD; Rajagopal K; Strable E; Schneider J; Finn MG J Am Chem Soc; 2006 May; 128(18):6056-7. PubMed ID: 16669673 [TBL] [Abstract][Full Text] [Related]
14. The effect of the head group on branched-alkyl chain surfactants in glycolipid/n-octane/water ternary system. Nainggolan I; Radiman S; Hamzah AS; Hashim R Colloids Surf B Biointerfaces; 2009 Oct; 73(1):84-91. PubMed ID: 19540095 [TBL] [Abstract][Full Text] [Related]
15. Photo gel-sol/sol-gel transition and its patterning of a supramolecular hydrogel as stimuli-responsive biomaterials. Matsumoto S; Yamaguchi S; Ueno S; Komatsu H; Ikeda M; Ishizuka K; Iko Y; Tabata KV; Aoki H; Ito S; Noji H; Hamachi I Chemistry; 2008; 14(13):3977-86. PubMed ID: 18335444 [TBL] [Abstract][Full Text] [Related]
16. Fibrous crystalline hydrogels formed from polymers possessing a linear poly(ethyleneimine) backbone. Yuan JJ; Jin RH Langmuir; 2005 Mar; 21(7):3136-45. PubMed ID: 15779996 [TBL] [Abstract][Full Text] [Related]
17. Strategy to introduce a pendent micellar structure into poly(N-isopropylacrylamide) hydrogels. Xu XD; Zhang XZ; Yang J; Cheng SX; Zhuo RX; Huang YQ Langmuir; 2007 Apr; 23(8):4231-6. PubMed ID: 17348696 [TBL] [Abstract][Full Text] [Related]
18. Organogel-hydrogel transformation by simple removal or inclusion of N-Boc-protection. Kar T; Mandal SK; Das PK Chemistry; 2011 Dec; 17(52):14952-61. PubMed ID: 22105985 [TBL] [Abstract][Full Text] [Related]
19. A smart supramolecular hydrogel of N(alpha)-(4-n-alkyloxybenzoyl)-L-histidine exhibiting pH-modulated properties. Patra T; Pal A; Dey J Langmuir; 2010 Jun; 26(11):7761-7. PubMed ID: 20380403 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and gelation property of a series of disaccharide triazole derivatives. Okafor IS; Wang G Carbohydr Res; 2017 Nov; 451():81-94. PubMed ID: 28987928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]