These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 22124457)

  • 21. Deposition of PEG onto PMMA microchannel surface to minimize nonspecific adsorption.
    Bi H; Meng S; Li Y; Guo K; Chen Y; Kong J; Yang P; Zhong W; Liu B
    Lab Chip; 2006 Jun; 6(6):769-75. PubMed ID: 16738729
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Soft lithographic patterning of supported lipid bilayers onto a surface and inside microfluidic channels.
    Kim P; Lee SE; Jung HS; Lee HY; Kawai T; Suh KY
    Lab Chip; 2006 Jan; 6(1):54-9. PubMed ID: 16372069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly sensitive poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] brush-based flow-through microarray immunoassay device.
    Liu Y; Wang W; Hu W; Lu Z; Zhou X; Li CM
    Biomed Microdevices; 2011 Aug; 13(4):769-77. PubMed ID: 21547537
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antibody immobilization on to polystyrene substrate--on-chip immunoassay for horse IgG based on fluorescence.
    Darain F; Gan KL; Tjin SC
    Biomed Microdevices; 2009 Jun; 11(3):653-61. PubMed ID: 19130240
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-throughput immunoassay through in-channel microfluidic patterning.
    Zheng C; Wang J; Pang Y; Wang J; Li W; Ge Z; Huang Y
    Lab Chip; 2012 Jul; 12(14):2487-90. PubMed ID: 22549364
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic heavy metal immunoassay based on absorbance measurement.
    Date Y; Terakado S; Sasaki K; Aota A; Matsumoto N; Shiku H; Ino K; Watanabe Y; Matsue T; Ohmura N
    Biosens Bioelectron; 2012 Mar; 33(1):106-12. PubMed ID: 22244671
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface functionalized thiol-ene waveguides for fluorescence biosensing in microfluidic devices.
    Feidenhans'l NA; Lafleur JP; Jensen TG; Kutter JP
    Electrophoresis; 2014 Feb; 35(2-3):282-8. PubMed ID: 23983194
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stable microstructured network for protein patterning on a plastic microfluidic channel: strategy and characterization of on-chip enzyme microreactors.
    Qu H; Wang H; Huang Y; Zhong W; Lu H; Kong J; Yang P; Liu B
    Anal Chem; 2004 Nov; 76(21):6426-33. PubMed ID: 15516137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A method for patterned in situ biofunctionalization in injection-molded microfluidic devices.
    Schütte J; Freudigmann C; Benz K; Böttger J; Gebhardt R; Stelzle M
    Lab Chip; 2010 Oct; 10(19):2551-8. PubMed ID: 20676423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic fabrication of addressable tethered lipid bilayer arrays and optimization using SPR with silane-derivatized nanoglassy substrates.
    Taylor JD; Phillips KS; Cheng Q
    Lab Chip; 2007 Jul; 7(7):927-30. PubMed ID: 17594015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical modifications of Au/SiO2 template substrates for patterned biofunctional surfaces.
    Briand E; Humblot V; Landoulsi J; Petronis S; Pradier CM; Kasemo B; Svedhem S
    Langmuir; 2011 Jan; 27(2):678-85. PubMed ID: 21142210
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling and optimization of high-sensitivity, low-volume microfluidic-based surface immunoassays.
    Zimmermann M; Delamarche E; Wolf M; Hunziker P
    Biomed Microdevices; 2005 Jun; 7(2):99-110. PubMed ID: 15940422
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resist-free patterning of surface architectures in polymer-based microanalytical devices.
    McCarley RL; Vaidya B; Wei S; Smith AF; Patel AB; Feng J; Murphy MC; Soper SA
    J Am Chem Soc; 2005 Jan; 127(3):842-3. PubMed ID: 15656615
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic immunosensor systems.
    Bange A; Halsall HB; Heineman WR
    Biosens Bioelectron; 2005 Jun; 20(12):2488-503. PubMed ID: 15854821
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lab-On-a-Chip for carbon nanotubes based immunoassay detection of Staphylococcal Enterotoxin B (SEB).
    Yang M; Sun S; Kostov Y; Rasooly A
    Lab Chip; 2010 Apr; 10(8):1011-7. PubMed ID: 20358108
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface modification of polymer microfluidic devices using in-channel atom transfer radical polymerization.
    Sun X; Liu J; Lee ML
    Electrophoresis; 2008 Jul; 29(13):2760-7. PubMed ID: 18615784
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical and chemical analysis of plasma and ultraviolet-ozone surface treatments for thermal bonding of polymeric microfluidic devices.
    Bhattacharyya A; Klapperich CM
    Lab Chip; 2007 Jul; 7(7):876-82. PubMed ID: 17594007
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Digital microfluidics using soft lithography.
    Urbanski JP; Thies W; Rhodes C; Amarasinghe S; Thorsen T
    Lab Chip; 2006 Jan; 6(1):96-104. PubMed ID: 16372075
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.