BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 22124613)

  • 1. Highly controlled electrofusion of individually selected cells in dielectrophoretic field cages.
    Kirschbaum M; Guernth-Marschner CR; Cherré S; de Pablo Peña A; Jaeger MS; Kroczek RA; Schnelle T; Mueller T; Duschl C
    Lab Chip; 2012 Feb; 12(3):443-50. PubMed ID: 22124613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On chip electrofusion of single human B cells and mouse myeloma cells for efficient hybridoma generation.
    Kemna EW; Wolbers F; Vermes I; van den Berg A
    Electrophoresis; 2011 Nov; 32(22):3138-46. PubMed ID: 22025094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-throughput dielectrophoresis-based cell electrofusion microfluidic device.
    Hu N; Yang J; Yin ZQ; Ai Y; Qian S; Svir IB; Xia B; Yan JW; Hou WS; Zheng XL
    Electrophoresis; 2011 Sep; 32(18):2488-95. PubMed ID: 21853446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microorifice-based high-yield cell fusion on microfluidic chip: electrofusion of selected pairs and fusant viability.
    Gel M; Suzuki S; Kimura Y; Kurosawa O; Techaumnat B; Oana H; Washizu M
    IEEE Trans Nanobioscience; 2009 Dec; 8(4):300-5. PubMed ID: 20142145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectrophoresis-assisted massively parallel cell pairing and fusion based on field constriction created by a micro-orifice array sheet.
    Kimura Y; Gel M; Techaumnat B; Oana H; Kotera H; Washizu M
    Electrophoresis; 2011 Sep; 32(18):2496-501. PubMed ID: 21874655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T cell activation on a single-cell level in dielectrophoresis-based microfluidic devices.
    Kirschbaum M; Jaeger MS; Schenkel T; Breinig T; Meyerhans A; Duschl C
    J Chromatogr A; 2008 Aug; 1202(1):83-9. PubMed ID: 18619604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution analyses of cell fusion dynamics in a biochip.
    Mottet G; Le Pioufle B; Mir LM
    Electrophoresis; 2012 Aug; 33(16):2508-15. PubMed ID: 22899258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How medium osmolarity influences dielectrophoretically assisted on-chip electrofusion.
    Hamdi FS; Français O; Dufour-Gergam E; Le Pioufle B
    Bioelectrochemistry; 2014 Dec; 100():27-35. PubMed ID: 25012938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel micropit device integrates automated cell positioning by dielectrophoresis and nuclear transfer by electrofusion.
    Clow AL; Gaynor PT; Oback BJ
    Biomed Microdevices; 2010 Oct; 12(5):777-86. PubMed ID: 20499188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electro Cell Fusion for Hybridoma Production.
    Greenfield EA
    Cold Spring Harb Protoc; 2019 Oct; 2019(10):. PubMed ID: 31575798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient immortalization of rheumatoid synovial tissue B-lymphocytes. A comparison between the techniques of electric field-induced and PEG fusion.
    Krenn V; von Landenberg P; Wozniak E; Kissler C; Hermelink HK; Zimmermann U; Vollmers HP
    Hum Antibodies Hybridomas; 1995; 6(2):47-51. PubMed ID: 7492750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microfluidic approach towards hybridoma generation for cancer immunotherapy.
    Lu YT; Pendharkar GP; Lu CH; Chang CM; Liu CH
    Oncotarget; 2015 Nov; 6(36):38764-76. PubMed ID: 26462149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dielectrophoretic capture of mammalian cells using transparent indium tin oxide electrodes in microfluidic systems.
    Sankaran B; Racic M; Tona A; Rao MV; Gaitan M; Forry SP
    Electrophoresis; 2008 Dec; 29(24):5047-54. PubMed ID: 19130589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrofusion of single cells in picoliter droplets.
    Schoeman RM; van den Beld WTE; Kemna EWM; Wolbers F; Eijkel JCT; van den Berg A
    Sci Rep; 2018 Feb; 8(1):3714. PubMed ID: 29487332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of specific human mab's by a small scale electrofusion technique: the influence of some physical and chemical factors on hybridoma yield of human peripheral blood lymphocytes XCB-F7 fusions.
    Glaser RW; Jahn S; Grunow R
    Allerg Immunol (Leipz); 1989; 35(2):123-32. PubMed ID: 2788981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell hybridization by electrofusion on filters.
    Ramos C; Bonenfant D; Teissie J
    Anal Biochem; 2002 Mar; 302(2):213-9. PubMed ID: 11878799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Development of new cell fusion technique by laser device and application to bio-medical field].
    Itagaki H; Doi H; Ohkohchi N; Satomi S
    Nihon Rinsho; 1997 Oct; 55(10):2780-7. PubMed ID: 9360406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of bulk cell electrofusion in vitro for production of human-mouse heterohybridoma cells.
    Trontelj K; Rebersek M; Kanduser M; Serbec VC; Sprohar M; Miklavcic D
    Bioelectrochemistry; 2008 Nov; 74(1):124-9. PubMed ID: 18667367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrofusion of B16-F1 and CHO cells: the comparison of the pulse first and contact first protocols.
    Usaj M; Flisar K; Miklavcic D; Kanduser M
    Bioelectrochemistry; 2013 Feb; 89():34-41. PubMed ID: 23032299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature measurements in microfluidic systems: heat dissipation of negative dielectrophoresis barriers.
    Seger-Sauli U; Panayiotou M; Schnydrig S; Jordan M; Renaud P
    Electrophoresis; 2005 Jun; 26(11):2239-46. PubMed ID: 15861466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.