These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y-27907 and Scheffersomyces stipitis NRRL Y-7124. Su YK; Willis LB; Jeffries TW Biotechnol Bioeng; 2015 Mar; 112(3):457-69. PubMed ID: 25164099 [TBL] [Abstract][Full Text] [Related]
3. Exploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae. Cadete RM; de Las Heras AM; Sandström AG; Ferreira C; Gírio F; Gorwa-Grauslund MF; Rosa CA; Fonseca C Biotechnol Biofuels; 2016; 9():167. PubMed ID: 27499810 [TBL] [Abstract][Full Text] [Related]
4. Improved inhibitor tolerance in xylose-fermenting yeast Spathaspora passalidarum by mutagenesis and protoplast fusion. Hou X; Yao S Appl Microbiol Biotechnol; 2012 Mar; 93(6):2591-601. PubMed ID: 22116630 [TBL] [Abstract][Full Text] [Related]
5. Comparative assessment of fermentative capacity of different xylose-consuming yeasts. Veras HCT; Parachin NS; Almeida JRM Microb Cell Fact; 2017 Sep; 16(1):153. PubMed ID: 28903764 [TBL] [Abstract][Full Text] [Related]
6. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862 [TBL] [Abstract][Full Text] [Related]
7. Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation. Hector RE; Mertens JA; Bowman MJ; Nichols NN; Cotta MA; Hughes SR Yeast; 2011 Sep; 28(9):645-60. PubMed ID: 21809385 [TBL] [Abstract][Full Text] [Related]
8. Highly efficient conversion of xylose to ethanol without glucose repression by newly isolated thermotolerant Spathaspora passalidarum CMUWF1-2. Rodrussamee N; Sattayawat P; Yamada M BMC Microbiol; 2018 Jul; 18(1):73. PubMed ID: 30005621 [TBL] [Abstract][Full Text] [Related]
9. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Jeppsson M; Bengtsson O; Franke K; Lee H; Hahn-Hägerdal B; Gorwa-Grauslund MF Biotechnol Bioeng; 2006 Mar; 93(4):665-73. PubMed ID: 16372361 [TBL] [Abstract][Full Text] [Related]
10. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Matsushika A; Watanabe S; Kodaki T; Makino K; Inoue H; Murakami K; Takimura O; Sawayama S Appl Microbiol Biotechnol; 2008 Nov; 81(2):243-55. PubMed ID: 18751695 [TBL] [Abstract][Full Text] [Related]
11. Construction of various mutants of xylose metabolizing enzymes for efficient conversion of biomass to ethanol. Saleh AA; Watanabe S; Annaluru N; Kodaki T; Makino K Nucleic Acids Symp Ser (Oxf); 2006; (50):279-80. PubMed ID: 17150926 [TBL] [Abstract][Full Text] [Related]
12. Physiological comparisons among Spathaspora passalidarum, Spathaspora arborariae, and Scheffersomyces stipitis reveal the bottlenecks for their use in the production of second-generation ethanol. Campos VJ; Ribeiro LE; Albuini FM; de Castro AG; Fontes PP; da Silveira WB; Rosa CA; Fietto LG Braz J Microbiol; 2022 Jun; 53(2):977-990. PubMed ID: 35174461 [TBL] [Abstract][Full Text] [Related]
13. Influence of glucose on xylose metabolization by Spathaspora passalidarum. Ribeiro LE; Albuini FM; Castro AG; Campos VJ; de Souza GB; Mendonça JGP; Rosa CA; Mendes TAO; Santana MF; da Silveira WB; Fietto LG Fungal Genet Biol; 2021 Dec; 157():103624. PubMed ID: 34536506 [TBL] [Abstract][Full Text] [Related]
14. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway. Ishii J; Yoshimura K; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007 [TBL] [Abstract][Full Text] [Related]
15. The production of ethanol from lignocellulosic biomass by Kluyveromyces marxianus CICC 1727-5 and Spathaspora passalidarum ATCC MYA-4345. Du C; Li Y; Zhao X; Pei X; Yuan W; Bai F; Jiang Y Appl Microbiol Biotechnol; 2019 Mar; 103(6):2845-2855. PubMed ID: 30706114 [TBL] [Abstract][Full Text] [Related]
16. Cofermentation of glucose, xylose, and cellobiose by the beetle-associated yeast Spathaspora passalidarum. Long TM; Su YK; Headman J; Higbee A; Willis LB; Jeffries TW Appl Environ Microbiol; 2012 Aug; 78(16):5492-500. PubMed ID: 22636012 [TBL] [Abstract][Full Text] [Related]
17. Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Hou J; Shen Y; Li XP; Bao XM Lett Appl Microbiol; 2007 Aug; 45(2):184-9. PubMed ID: 17651216 [TBL] [Abstract][Full Text] [Related]
18. Genetic improvement of native xylose-fermenting yeasts for ethanol production. Harner NK; Wen X; Bajwa PK; Austin GD; Ho CY; Habash MB; Trevors JT; Lee H J Ind Microbiol Biotechnol; 2015 Jan; 42(1):1-20. PubMed ID: 25404205 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Rudolf A; Baudel H; Zacchi G; Hahn-Hägerdal B; Lidén G Biotechnol Bioeng; 2008 Mar; 99(4):783-90. PubMed ID: 17787015 [TBL] [Abstract][Full Text] [Related]
20. Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation. Li Y; Park JY; Shiroma R; Tokuyasu K J Biosci Bioeng; 2011 Jun; 111(6):682-6. PubMed ID: 21397557 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]