These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 22124723)
1. Recent advances in curdlan biosynthesis, biotechnological production, and applications. Zhan XB; Lin CC; Zhang HT Appl Microbiol Biotechnol; 2012 Jan; 93(2):525-31. PubMed ID: 22124723 [TBL] [Abstract][Full Text] [Related]
2. Curdlan and other bacterial (1-->3)-beta-D-glucans. McIntosh M; Stone BA; Stanisich VA Appl Microbiol Biotechnol; 2005 Aug; 68(2):163-73. PubMed ID: 15818477 [TBL] [Abstract][Full Text] [Related]
3. Enhanced production of curdlan by coupled fermentation system of Agrobacterium sp. ATCC 31749 and Trichoderma harzianum GIM 3.442. Liang Y; Zhu L; Ding H; Gao M; Zheng Z; Wu J; Zhan X Carbohydr Polym; 2017 Feb; 157():1687-1694. PubMed ID: 27987884 [TBL] [Abstract][Full Text] [Related]
4. Glutamine synthetase gene glnA plays a vital role in curdlan biosynthesis of Agrobacterium sp. CGMCC 11546. Zhang W; Gao H; Huang Y; Wu S; Tian J; Niu Y; Zou C; Jia C; Jin M; Huang J; Chang Z; Yang X; Jiang D Int J Biol Macromol; 2020 Dec; 165(Pt A):222-230. PubMed ID: 32987068 [TBL] [Abstract][Full Text] [Related]
5. Influence of Tween-80 on the production and structure of water-insoluble curdlan from Agrobacterium sp. Liang Y; Zhu L; Gao M; Zheng Z; Wu J; Zhan X Int J Biol Macromol; 2018 Jan; 106():611-619. PubMed ID: 28807687 [TBL] [Abstract][Full Text] [Related]
6. Methionine biosynthesis pathway genes affect curdlan biosynthesis of Agrobacterium sp. CGMCC 11546 via energy regeneration. Gao H; Zhang W; Zhang J; Huang Y; Zhang J; Tian J; Niu Y; Zou C; Jia C; Chang Z; Yang X; Jiang D Int J Biol Macromol; 2021 Aug; 185():821-831. PubMed ID: 34216670 [TBL] [Abstract][Full Text] [Related]
7. Metabolic engineering of Agrobacterium sp. ATCC31749 for curdlan production from cellobiose. Shin HD; Liu L; Kim MK; Park YI; Chen R J Ind Microbiol Biotechnol; 2016 Sep; 43(9):1323-31. PubMed ID: 27387419 [TBL] [Abstract][Full Text] [Related]
8. Exopolysaccharide synthesis repressor genes (exoR and exoX) related to curdlan biosynthesis by Agrobacterium sp. Gao M; Liu Z; Zhao Z; Wang Z; Hu X; Jiang Y; Yan J; Li Z; Zheng Z; Zhan X Int J Biol Macromol; 2022 Apr; 205():193-202. PubMed ID: 35181324 [TBL] [Abstract][Full Text] [Related]
9. Effective production of biologically active water-soluble β-1,3-glucan by a coupled system of Agrobacterium sp. and Trichoderma harzianum. Liang Y; Zhu L; Gao M; Wu J; Zhan X Prep Biochem Biotechnol; 2018 May; 48(5):446-456. PubMed ID: 29561218 [TBL] [Abstract][Full Text] [Related]
11. Improved curdlan production with discarded bottom parts of Asparagus spear. Anane RF; Sun H; Zhao L; Wang L; Lin C; Mao Z Microb Cell Fact; 2017 Apr; 16(1):59. PubMed ID: 28388915 [TBL] [Abstract][Full Text] [Related]
12. Improved curdlan fermentation process based on optimization of dissolved oxygen combined with pH control and metabolic characterization of Agrobacterium sp. ATCC 31749. Zhang HT; Zhan XB; Zheng ZY; Wu JR; English N; Yu XB; Lin CC Appl Microbiol Biotechnol; 2012 Jan; 93(1):367-79. PubMed ID: 21739265 [TBL] [Abstract][Full Text] [Related]
13. Characterization and improvement of curdlan produced by a high-yield mutant of Agrobacterium sp. ATCC 31749 based on whole-genome analysis. Gao H; Xie F; Zhang W; Tian J; Zou C; Jia C; Jin M; Huang J; Chang Z; Yang X; Jiang D Carbohydr Polym; 2020 Oct; 245():116486. PubMed ID: 32718606 [TBL] [Abstract][Full Text] [Related]
14. [Proteomic analysis of curdlan-producing Agrobacterium sp. ATCC 31749 in response to dissolved oxygen]. Dai X; Yang L; Zheng Z; Chen H; Zhan X Wei Sheng Wu Xue Bao; 2015 Aug; 55(8):1018-25. PubMed ID: 26665599 [TBL] [Abstract][Full Text] [Related]
15. Changes of curdlan biosynthesis and nitrogenous compounds utilization characterized in ntrC mutant of Agrobacterium sp. ATCC 31749. Yu LJ; Wu JR; Zheng ZY; Zhan XB; Lin CC Curr Microbiol; 2011 Jul; 63(1):60-7. PubMed ID: 21533781 [TBL] [Abstract][Full Text] [Related]
16. Genetic control and regulatory mechanisms of succinoglycan and curdlan biosynthesis in genus Agrobacterium. Wu D; Li A; Ma F; Yang J; Xie Y Appl Microbiol Biotechnol; 2016 Jul; 100(14):6183-6192. PubMed ID: 27255488 [TBL] [Abstract][Full Text] [Related]
17. Characterization of curdlan produced by Agrobacterium sp. IFO 13140 cells immobilized in a loofa sponge matrix, and application of this biopolymer in the development of functional yogurt. Ortiz Martinez C; Pereira Ruiz S; Carvalho Fenelon V; Rodrigues de Morais G; Luciano Baesso M; Matioli G J Sci Food Agric; 2016 May; 96(7):2410-7. PubMed ID: 26219432 [TBL] [Abstract][Full Text] [Related]
18. Changes in gene transcription and protein expression involved in the response of Agrobacterium sp. ATCC 31749 to nitrogen availability during curdlan production. Yu LJ; Wu JR; Zheng ZZ; Lin CC; Zhan XB Prikl Biokhim Mikrobiol; 2011; 47(5):537-43. PubMed ID: 22232894 [TBL] [Abstract][Full Text] [Related]
19. CrdR function in a curdlan-producing Agrobacterium sp. ATCC31749 strain. Yu X; Zhang C; Yang L; Zhao L; Lin C; Liu Z; Mao Z BMC Microbiol; 2015 Feb; 15(1):25. PubMed ID: 25880528 [TBL] [Abstract][Full Text] [Related]
20. An increase of curdlan productivity by integration of carbon/nitrogen sources control and sequencing dual fed-batch fermentors operation. Zheng ZY; Jiang Y; Zhan XB; Ma LW; Wu JR; Zhang LM; Lin CC Prikl Biokhim Mikrobiol; 2014; 50(1):44-51. PubMed ID: 25272751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]