These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 221250)
1. Cytochrome c2--reaction centre coupling in chromatophores of Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata. Bowyer JR; Tierney GV; Crofts AR FEBS Lett; 1979 May; 101(1):207-12. PubMed ID: 221250 [No Abstract] [Full Text] [Related]
2. A kinetic completion of the cyclic photosynthetic electron pathway of Rhodopseudomonas sphaeroides: cytochrome b-cytochrome c2 oxidation-reduction. Prince RC; Dutton PL Biochim Biophys Acta; 1975 Jun; 387(3):609-13. PubMed ID: 166671 [TBL] [Abstract][Full Text] [Related]
3. The kinetic and redox potentiometric resolution of the carotenoid shifts in Rhodopseudomonas spheroides chromatophores: their relationship to electric field alterations in electron transport and energy coupling. Jackson JB; Dutton PL Biochim Biophys Acta; 1973 Oct; 325(1):102-13. PubMed ID: 4358810 [No Abstract] [Full Text] [Related]
4. In situ characterisation of photosynthetic electron transport in Rhodopseudomonas capsulata. Evans EH; Crofts AR Biochim Biophys Acta; 1974 Jul; 357(1):89-102. PubMed ID: 4370093 [No Abstract] [Full Text] [Related]
5. The influence of transmembrane potentials of the redox equilibrium between cytochrome c2 and the reaction center in Rhodopseudomonas sphaeroides chromatophores. Takamiya K; Dutton PL FEBS Lett; 1977 Aug; 80(2):279-84. PubMed ID: 196931 [No Abstract] [Full Text] [Related]
6. Kinetics of the c-cytochromes in chromatophores from Rhodopseudomonas sphaeroides as a function of the concentration of cytochrome c2. Influence of this concentration on the oscillation of the secondary acceptor of the reaction centers QB. Snozzi M; Crofts AR Biochim Biophys Acta; 1985 Sep; 809(2):260-70. PubMed ID: 2994721 [TBL] [Abstract][Full Text] [Related]
7. Diffusion-potential-induced oxidation and reduction of cytochromes in chromatophores from Rhodopseudomonas sphaeroides. Matsuura K; Nishimura M J Biochem; 1978 Sep; 84(3):539-46. PubMed ID: 214426 [TBL] [Abstract][Full Text] [Related]
8. Effects of surface potential on the equilibrium and kinetics of redox reactions of membrane components with external reagents in chromatophores from Rhodopseudomonas sphaeroides. Matsuura K; Takamiya K; Itoh S; Nishimura M J Biochem; 1980 May; 87(5):1431-7. PubMed ID: 6248508 [TBL] [Abstract][Full Text] [Related]
9. Factors controlling the binding of two protons per electron transferred through the ubiquinone and cytochrome b/c2 segment of Rhodopseudomonas sphaeroides chromatophores. Petty K; Jackson JB; Dutton PL Biochim Biophys Acta; 1979 Apr; 546(1):17-42. PubMed ID: 36140 [TBL] [Abstract][Full Text] [Related]
10. On the mechanism of photosynthetic electron transfer in Rhodopseudomonas capsulata and Rhodopseudomonas sphaeroides. Bowyer JR; Crofts AR Biochim Biophys Acta; 1981 Jul; 636(2):218-33. PubMed ID: 6269602 [No Abstract] [Full Text] [Related]
11. Resolved difference spectra of redox centers involved in photosynthetic electron flow in Rhodopseudomonas capsulata and Rhodopseudomonas sphaeroides. Bowyer JR; Meinhardt SW; Tierney GV; Crofts AR Biochim Biophys Acta; 1981 Mar; 635(1):167-86. PubMed ID: 6260162 [TBL] [Abstract][Full Text] [Related]
12. The effect of redox potential on the coupling between rapid hydrogen-ion binding and electron transport in chromatophores from Rhodopseudomonas spheroides. Cogdell RJ; Jackson JB; Crofts AR J Bioenerg; 1973 Jan; 4(1):211-27. PubMed ID: 4541536 [No Abstract] [Full Text] [Related]
13. Kinetics and stoichiometry of proton binding in Phodopseudomonas sphaeroides chromatophores. Petty KM; Jackson JB; Dutton PL FEBS Lett; 1977 Dec; 84(2):299-303. PubMed ID: 23313 [No Abstract] [Full Text] [Related]
14. Thermodynamic and kinetic characterization of electron transfer components in situ in Rhodopseudomonas spheroides and Rhodospirillum rubrum. Dutton PL; Jackson JB Eur J Biochem; 1972 Nov; 30(3):495-510. PubMed ID: 4344828 [No Abstract] [Full Text] [Related]
15. Two regimens of electrogenic cyclic redox chain operation in chromatophores of non-sulfur purple bacteria. A study using antimycin A. Remennikov VG; Samuilov VD Biochim Biophys Acta; 1979 Nov; 548(2):216-33. PubMed ID: 116681 [TBL] [Abstract][Full Text] [Related]
16. Differential extraction and structural specificity of specialized ubiquinone molecules in secondary electron transfer in chromatophores from Rhodopseudomonas sphaeroides, Ga. Baccarini-Melandri A; Gabellini N; Melandri BA; Jones KR; Rutherford AW; Crofts AR; Hurt E Arch Biochem Biophys; 1982 Jul; 216(2):566-80. PubMed ID: 6981381 [No Abstract] [Full Text] [Related]
17. Asymmetry of an energy transducing membrane the location of cytochrome c2 in Rhodopseudomonas spheroides and Rhodopseudomonas capsulata. Prince RC; Baccarini-Melandri A; Hauska GA; Melandri BA; Crofts AR Biochim Biophys Acta; 1975 May; 387(2):212-27. PubMed ID: 164941 [TBL] [Abstract][Full Text] [Related]
18. Light-induced oxygen reduction as a probe of electron transport between respiratory and photosynthetic components in membranes of Rhodopseudomonas capsulata. Zannoni D; Jasper P; Marrs B Arch Biochem Biophys; 1978 Dec; 191(2):625-31. PubMed ID: 742893 [No Abstract] [Full Text] [Related]
19. Photosynthetic control and estimation of the optimal ATP: electron stoichiometry during flash activation of chromatophores from Rhodopseudomonas capsulata. Jackson JB; Venturoli G; Baccarini-Melandri A; Melandri BA Biochim Biophys Acta; 1981 Jun; 636(1):1-8. PubMed ID: 7284340 [TBL] [Abstract][Full Text] [Related]
20. A Q-cycle mechanism for the cyclic electron-transfer chain of Rhodopseudomonas sphaeroides. Crofts AR; Meinhardt SW Biochem Soc Trans; 1982 Aug; 10(4):201-3. PubMed ID: 6292019 [No Abstract] [Full Text] [Related] [Next] [New Search]