BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22125256)

  • 1. Querying quantitative logic models (Q2LM) to study intracellular signaling networks and cell-cytokine interactions.
    Morris MK; Shriver Z; Sasisekharan R; Lauffenburger DA
    Biotechnol J; 2012 Mar; 7(3):374-86. PubMed ID: 22125256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli.
    Morris MK; Saez-Rodriguez J; Clarke DC; Sorger PK; Lauffenburger DA
    PLoS Comput Biol; 2011 Mar; 7(3):e1001099. PubMed ID: 21408212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic Analysis of Quantitative Logic Model Ensembles Predicts Drug Combination Effects on Cell Signaling Networks.
    Morris MK; Clarke DC; Osimiri LC; Lauffenburger DA
    CPT Pharmacometrics Syst Pharmacol; 2016 Oct; 5(10):544-553. PubMed ID: 27567007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of cell type-specific logic models of signaling networks using CellNOpt.
    Morris MK; Melas I; Saez-Rodriguez J
    Methods Mol Biol; 2013; 930():179-214. PubMed ID: 23086842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non Linear Programming (NLP) formulation for quantitative modeling of protein signal transduction pathways.
    Mitsos A; Melas IN; Morris MK; Saez-Rodriguez J; Lauffenburger DA; Alexopoulos LG
    PLoS One; 2012; 7(11):e50085. PubMed ID: 23226239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. State-time spectrum of signal transduction logic models.
    MacNamara A; Terfve C; Henriques D; Bernabé BP; Saez-Rodriguez J
    Phys Biol; 2012 Aug; 9(4):045003. PubMed ID: 22871648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parsing the effects of binding, signaling, and trafficking on the mitogenic potencies of granulocyte colony-stimulating factor analogues.
    Sarkar CA; Lowenhaupt K; Wang PJ; Horan T; Lauffenburger DA
    Biotechnol Prog; 2003; 19(3):955-64. PubMed ID: 12790662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fuzzy physiologically based pharmacokinetic modeling framework to predict drug disposition in humans.
    Seng KY; Vicini P; Nestorov IA
    Conf Proc IEEE Eng Med Biol Soc; 2006; Suppl():6485-8. PubMed ID: 17959432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fuzzy physiologically based pharmacokinetic modeling framework to predict drug disposition in humans.
    Seng KY; Vicini P; Nestorov IA
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5037-40. PubMed ID: 17947127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Logic-based models for the analysis of cell signaling networks.
    Morris MK; Saez-Rodriguez J; Sorger PK; Lauffenburger DA
    Biochemistry; 2010 Apr; 49(15):3216-24. PubMed ID: 20225868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and simulating networks of interdependent protein interactions.
    Stöcker BK; Köster J; Zamir E; Rahmann S
    Integr Biol (Camb); 2018 May; 10(5):290-305. PubMed ID: 29676773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms.
    Terfve C; Cokelaer T; Henriques D; MacNamara A; Goncalves E; Morris MK; van Iersel M; Lauffenburger DA; Saez-Rodriguez J
    BMC Syst Biol; 2012 Oct; 6():133. PubMed ID: 23079107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fuzzy logic analysis of kinase pathway crosstalk in TNF/EGF/insulin-induced signaling.
    Aldridge BB; Saez-Rodriguez J; Muhlich JL; Sorger PK; Lauffenburger DA
    PLoS Comput Biol; 2009 Apr; 5(4):e1000340. PubMed ID: 19343194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneous fuzzy logic networks: fundamentals and development studies.
    Pedrycz W
    IEEE Trans Neural Netw; 2004 Nov; 15(6):1466-81. PubMed ID: 15565774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mining, modeling, and evaluation of subnetworks from large biomolecular networks and its comparison study.
    Hu X; Ng M; Wu FX; Sokhansanj BA
    IEEE Trans Inf Technol Biomed; 2009 Mar; 13(2):184-94. PubMed ID: 19272861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An improved genetic algorithm based fuzzy-tuned neural network.
    Ling SH; Leung FH; Lam HK
    Int J Neural Syst; 2005 Dec; 15(6):457-74. PubMed ID: 16385635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fuzzy performance between surface fitting and energy distribution in turbulence runner.
    Liang Z; Liu X; Ye B; Brauwer RK
    ScientificWorldJournal; 2012; 2012():408949. PubMed ID: 23213287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Querying KEGG pathways in logic.
    Sultana KZ; Bhattacharjee A; Jamil H
    Int J Data Min Bioinform; 2014; 9(1):1-21. PubMed ID: 24783405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lag synchronization of unknown chaotic delayed Yang-Yang-type fuzzy neural networks with noise perturbation based on adaptive control and parameter identification.
    Xia Y; Yang Z; Han M
    IEEE Trans Neural Netw; 2009 Jul; 20(7):1165-80. PubMed ID: 19497816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling Cell-to-Cell Communication Networks Using Response-Time Distributions.
    Thurley K; Wu LF; Altschuler SJ
    Cell Syst; 2018 Mar; 6(3):355-367.e5. PubMed ID: 29525203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.