These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 22125308)

  • 1. Pulmonary system limitations to endurance exercise performance in humans.
    Amann M
    Exp Physiol; 2012 Mar; 97(3):311-8. PubMed ID: 22125308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sex differences in exercise-induced diaphragmatic fatigue in endurance-trained athletes.
    Guenette JA; Romer LM; Querido JS; Chua R; Eves ND; Road JD; McKenzie DC; Sheel AW
    J Appl Physiol (1985); 2010 Jul; 109(1):35-46. PubMed ID: 20413422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological implications of altitude training for endurance performance at sea level: a review.
    Bailey DM; Davies B
    Br J Sports Med; 1997 Sep; 31(3):183-90. PubMed ID: 9298550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of hypoxia on diaphragmatic fatigue in highly trained athletes.
    Vogiatzis I; Georgiadou O; Koskolou M; Athanasopoulos D; Kostikas K; Golemati S; Wagner H; Roussos C; Wagner PD; Zakynthinos S
    J Physiol; 2007 May; 581(Pt 1):299-308. PubMed ID: 17317748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological consequences of a high work of breathing during heavy exercise in humans.
    Guenette JA; Sheel AW
    J Sci Med Sport; 2007 Dec; 10(6):341-50. PubMed ID: 17418638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing team-sport athlete performance: is altitude training relevant?
    Billaut F; Gore CJ; Aughey RJ
    Sports Med; 2012 Sep; 42(9):751-67. PubMed ID: 22845561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of exercise-induced arterial hypoxaemia and work rate on diaphragmatic fatigue in highly trained endurance athletes.
    Vogiatzis I; Georgiadou O; Giannopoulou I; Koskolou M; Zakynthinos S; Kostikas K; Kosmas E; Wagner H; Peraki E; Koutsoukou A; Koulouris N; Wagner PD; Roussos C
    J Physiol; 2006 Apr; 572(Pt 2):539-49. PubMed ID: 16439429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New perspectives concerning feedback influences on cardiorespiratory control during rhythmic exercise and on exercise performance.
    Dempsey JA
    J Physiol; 2012 Sep; 590(17):4129-44. PubMed ID: 22826128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Update in the understanding of altitude-induced limitations to performance in team-sport athletes.
    Billaut F; Aughey RJ
    Br J Sports Med; 2013 Dec; 47 Suppl 1(Suppl 1):i22-5. PubMed ID: 24282202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endurance exercise performance in Masters athletes: age-associated changes and underlying physiological mechanisms.
    Tanaka H; Seals DR
    J Physiol; 2008 Jan; 586(1):55-63. PubMed ID: 17717011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory system determinants of peripheral fatigue and endurance performance.
    Dempsey JA; Amann M; Romer LM; Miller JD
    Med Sci Sports Exerc; 2008 Mar; 40(3):457-61. PubMed ID: 18379207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respiratory physiology: adaptations to high-level exercise.
    McKenzie DC
    Br J Sports Med; 2012 May; 46(6):381-4. PubMed ID: 22267571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The performance and aerobic endurance effects of high-intensity versus moderate-intensity continuous running.
    Jarstad E; Mamen A
    Appl Physiol Nutr Metab; 2019 Sep; 44(9):990-996. PubMed ID: 30726107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of inspiratory muscle fatigue on exercise performance taking into account the fatigue-induced excess respiratory drive.
    Wüthrich TU; Notter DA; Spengler CM
    Exp Physiol; 2013 Dec; 98(12):1705-17. PubMed ID: 24014807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Respiratory muscle training in athletes with cervical spinal cord injury: effects on cardiopulmonary function and exercise capacity.
    Gee CM; Williams AM; Sheel AW; Eves ND; West CR
    J Physiol; 2019 Jul; 597(14):3673-3685. PubMed ID: 31115056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of pulmonary system limitations on locomotor muscle fatigue in patients with COPD.
    Amann M; Regan MS; Kobitary M; Eldridge MW; Boutellier U; Pegelow DF; Dempsey JA
    Am J Physiol Regul Integr Comp Physiol; 2010 Jul; 299(1):R314-24. PubMed ID: 20445160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ergogenics of hypoxia training in athletes.
    Loffredo BM; Glazer JL
    Curr Sports Med Rep; 2006 Jun; 5(4):203-9. PubMed ID: 16822343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Training modalities: impact on endurance capacity.
    Flueck M; Eilers W
    Endocrinol Metab Clin North Am; 2010 Mar; 39(1):183-200, xi. PubMed ID: 20122458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans.
    Amann M; Eldridge MW; Lovering AT; Stickland MK; Pegelow DF; Dempsey JA
    J Physiol; 2006 Sep; 575(Pt 3):937-52. PubMed ID: 16793898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Update in the understanding of respiratory limitations to exercise performance in fit, active adults.
    Dempsey JA; McKenzie DC; Haverkamp HC; Eldridge MW
    Chest; 2008 Sep; 134(3):613-622. PubMed ID: 18779196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.