These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 22125476)

  • 1. Multi-Site λ-dynamics for simulated Structure-Activity Relationship studies.
    Knight JL; Brooks CL
    J Chem Theory Comput; 2011 Sep; 7(9):2728-2739. PubMed ID: 22125476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biasing Potential Replica Exchange Multisite λ-Dynamics for Efficient Free Energy Calculations.
    Armacost KA; Goh GB; Brooks CL
    J Chem Theory Comput; 2015 Mar; 11(3):1267-77. PubMed ID: 26579773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalizing the Discrete Gibbs Sampler-Based λ-Dynamics Approach for Multisite Sampling of Many Ligands.
    Vilseck JZ; Ding X; Hayes RL; Brooks CL
    J Chem Theory Comput; 2021 Jul; 17(7):3895-3907. PubMed ID: 34101448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alchemical Free Energy Methods Applied to Complexes of the First Bromodomain of BRD4.
    Guest EE; Cervantes LF; Pickett SD; Brooks CL; Hirst JD
    J Chem Inf Model; 2022 Mar; 62(6):1458-1470. PubMed ID: 35258972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approaching protein design with multisite λ dynamics: Accurate and scalable mutational folding free energies in T4 lysozyme.
    Hayes RL; Vilseck JZ; Brooks CL
    Protein Sci; 2018 Nov; 27(11):1910-1922. PubMed ID: 30175503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QSAR via multisite λ-dynamics in the orphaned TSSK1B kinase.
    Liu X; Tsang PK; Soellner MB; Brooks CL
    Protein Sci; 2023 Apr; 32(4):e4623. PubMed ID: 36906820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive Landscape Flattening Accelerates Sampling of Alchemical Space in Multisite λ Dynamics.
    Hayes RL; Armacost KA; Vilseck JZ; Brooks CL
    J Phys Chem B; 2017 Apr; 121(15):3626-3635. PubMed ID: 28112940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overcoming Challenging Substituent Perturbations with Multisite λ-Dynamics: A Case Study Targeting β-Secretase 1.
    Vilseck JZ; Sohail N; Hayes RL; Brooks CL
    J Phys Chem Lett; 2019 Sep; 10(17):4875-4880. PubMed ID: 31386370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated, Accurate, and Scalable Relative Protein-Ligand Binding Free-Energy Calculations Using Lambda Dynamics.
    Raman EP; Paul TJ; Hayes RL; Brooks CL
    J Chem Theory Comput; 2020 Dec; 16(12):7895-7914. PubMed ID: 33201701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanded Ensemble Methods Can be Used to Accurately Predict Protein-Ligand Relative Binding Free Energies.
    Zhang S; Hahn DF; Shirts MR; Voelz VA
    J Chem Theory Comput; 2021 Oct; 17(10):6536-6547. PubMed ID: 34516130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Addressing Intersite Coupling Unlocks Large Combinatorial Chemical Spaces for Alchemical Free Energy Methods.
    Hayes RL; Vilseck JZ; Brooks CL
    J Chem Theory Comput; 2022 Apr; 18(4):2114-2123. PubMed ID: 35255214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA.
    Wang J; Morin P; Wang W; Kollman PA
    J Am Chem Soc; 2001 Jun; 123(22):5221-30. PubMed ID: 11457384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing Multisite λ-Dynamics Throughput with Charge Renormalization.
    Vilseck JZ; Cervantes LF; Hayes RL; Brooks CL
    J Chem Inf Model; 2022 Mar; 62(6):1479-1488. PubMed ID: 35286093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating the ligand-binding affinity via λ-dependent umbrella sampling simulations.
    Ngo ST
    J Comput Chem; 2021 Jan; 42(2):117-123. PubMed ID: 33078419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study of the ligand-CYP2B4 complexes: effect of structure on binding free energies and heme spin state.
    Harris DL; Park JY; Gruenke L; Waskell L
    Proteins; 2004 Jun; 55(4):895-914. PubMed ID: 15146488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Binding Free Energies in a Large Combinatorial Chemical Space Using Multisite λ Dynamics.
    Vilseck JZ; Armacost KA; Hayes RL; Goh GB; Brooks CL
    J Phys Chem Lett; 2018 Jun; 9(12):3328-3332. PubMed ID: 29847134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarizable Simulations with Second order Interaction Model - force field and software for fast polarizable calculations: Parameters for small model systems and free energy calculations.
    Kaminski GA; Ponomarev SY; Liu AB
    J Chem Theory Comput; 2009 Oct; 5(11):2935-2943. PubMed ID: 20209038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast free energy estimates from λ-dynamics with bias-updated Gibbs sampling.
    Robo MT; Hayes RL; Ding X; Pulawski B; Vilseck JZ
    Nat Commun; 2023 Dec; 14(1):8515. PubMed ID: 38129400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lambda-dynamics free energy simulation methods.
    Knight JL; Brooks CL
    J Comput Chem; 2009 Aug; 30(11):1692-700. PubMed ID: 19421993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the binding energies of testosterone, 5alpha-dihydrotestosterone, androstenedione and dehydroepiandrosterone sulfate with an antitestosterone antibody.
    Nordman N; Valjakka J; Peräkylä M
    Proteins; 2003 Jan; 50(1):135-43. PubMed ID: 12471606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.