These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 22125486)

  • 1. Sparse gamma rhythms arising through clustering in adapting neuronal networks.
    Kilpatrick ZP; Ermentrout B
    PLoS Comput Biol; 2011 Nov; 7(11):e1002281. PubMed ID: 22125486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation and shunting inhibition leads to pyramidal/interneuron gamma with sparse firing of pyramidal cells.
    Krupa M; Gielen S; Gutkin B
    J Comput Neurosci; 2014 Oct; 37(2):357-76. PubMed ID: 25005326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopamine D4 receptor activation increases hippocampal gamma oscillations by enhancing synchronization of fast-spiking interneurons.
    Andersson R; Johnston A; Fisahn A
    PLoS One; 2012; 7(7):e40906. PubMed ID: 22815864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing the competition of gamma rhythms with delayed pulse-coupled oscillators in phase representation.
    Viriyopase A; Memmesheimer RM; Gielen S
    Phys Rev E; 2018 Aug; 98(2-1):022217. PubMed ID: 30253475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase response theory explains cluster formation in sparsely but strongly connected inhibitory neural networks and effects of jitter due to sparse connectivity.
    Tikidji-Hamburyan RA; Leonik CA; Canavier CC
    J Neurophysiol; 2019 Apr; 121(4):1125-1142. PubMed ID: 30726155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons.
    Brunel N
    J Comput Neurosci; 2000; 8(3):183-208. PubMed ID: 10809012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limbic gamma rhythms. II. Synaptic and intrinsic mechanisms underlying spike doublets in oscillating subicular neurons.
    Stanford IM; Traub RD; Jefferys JG
    J Neurophysiol; 1998 Jul; 80(1):162-71. PubMed ID: 9658038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons.
    Ladenbauer J; Augustin M; Shiau L; Obermayer K
    PLoS Comput Biol; 2012; 8(4):e1002478. PubMed ID: 22511861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locking of correlated neural activity to ongoing oscillations.
    Kühn T; Helias M
    PLoS Comput Biol; 2017 Jun; 13(6):e1005534. PubMed ID: 28604771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of gap junctions on the firing patterns and synchrony for different external inputs in the striatal fast-spiking neuron network.
    Zhang M; Zhao Z; He P; Wang J
    Biomed Mater Eng; 2014; 24(6):2635-44. PubMed ID: 25226967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine and gamma band synchrony in schizophrenia--insights from computational and empirical studies.
    Kömek K; Bard Ermentrout G; Walker CP; Cho RY
    Eur J Neurosci; 2012 Jul; 36(2):2146-55. PubMed ID: 22805060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alpha-frequency rhythms desynchronize over long cortical distances: a modeling study.
    Jones SR; Pinto DJ; Kaper TJ; Kopell N
    J Comput Neurosci; 2000; 9(3):271-91. PubMed ID: 11139043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance.
    Brunel N; Wang XJ
    J Neurophysiol; 2003 Jul; 90(1):415-30. PubMed ID: 12611969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Somatostatin-Positive Cortical Interneurons in the Generation of Sleep Slow Waves.
    Funk CM; Peelman K; Bellesi M; Marshall W; Cirelli C; Tononi G
    J Neurosci; 2017 Sep; 37(38):9132-9148. PubMed ID: 28821651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of hippocampal rhythms by subthreshold electric fields and network topology.
    Berzhanskaya J; Chernyy N; Gluckman BJ; Schiff SJ; Ascoli GA
    J Comput Neurosci; 2013 Jun; 34(3):369-89. PubMed ID: 23053863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellularly-driven differences in network synchronization propensity are differentially modulated by firing frequency.
    Fink CG; Booth V; Zochowski M
    PLoS Comput Biol; 2011 May; 7(5):e1002062. PubMed ID: 21625571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How noise affects the synchronization properties of recurrent networks of inhibitory neurons.
    Brunel N; Hansel D
    Neural Comput; 2006 May; 18(5):1066-110. PubMed ID: 16595058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The number of synaptic inputs and the synchrony of large, sparse neuronal networks.
    Golomb D; Hansel D
    Neural Comput; 2000 May; 12(5):1095-139. PubMed ID: 10905810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning alters theta amplitude, theta-gamma coupling and neuronal synchronization in inferotemporal cortex.
    Kendrick KM; Zhan Y; Fischer H; Nicol AU; Zhang X; Feng J
    BMC Neurosci; 2011 Jun; 12():55. PubMed ID: 21658251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple origins of the cortical γ rhythm.
    Whittington MA; Cunningham MO; LeBeau FE; Racca C; Traub RD
    Dev Neurobiol; 2011 Jan; 71(1):92-106. PubMed ID: 21154913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.