BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 22125493)

  • 1. The NF1 gene contains hotspots for L1 endonuclease-dependent de novo insertion.
    Wimmer K; Callens T; Wernstedt A; Messiaen L
    PLoS Genet; 2011 Nov; 7(11):e1002371. PubMed ID: 22125493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rescuing Alu: recovery of new inserts shows LINE-1 preserves Alu activity through A-tail expansion.
    Wagstaff BJ; Hedges DJ; Derbes RS; Campos Sanchez R; Chiaromonte F; Makova KD; Roy-Engel AM
    PLoS Genet; 2012; 8(8):e1002842. PubMed ID: 22912586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of pre-insertion loci of de novo L1 insertions.
    Gasior SL; Preston G; Hedges DJ; Gilbert N; Moran JV; Deininger PL
    Gene; 2007 Apr; 390(1-2):190-8. PubMed ID: 17067767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide de novo L1 Retrotransposition Connects Endonuclease Activity with Replication.
    Flasch DA; Macia Á; Sánchez L; Ljungman M; Heras SR; García-Pérez JL; Wilson TE; Moran JV
    Cell; 2019 May; 177(4):837-851.e28. PubMed ID: 30955886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of 5' junctions of human LINE-1 and Alu retrotransposons suggests an alternative model for 5'-end attachment requiring microhomology-mediated end-joining.
    Zingler N; Willhoeft U; Brose HP; Schoder V; Jahns T; Hanschmann KM; Morrish TA; Löwer J; Schumann GG
    Genome Res; 2005 Jun; 15(6):780-9. PubMed ID: 15930490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres.
    Morrish TA; Garcia-Perez JL; Stamato TD; Taccioli GE; Sekiguchi J; Moran JV
    Nature; 2007 Mar; 446(7132):208-12. PubMed ID: 17344853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints.
    Vogt J; Bengesser K; Claes KB; Wimmer K; Mautner VF; van Minkelen R; Legius E; Brems H; Upadhyaya M; Högel J; Lazaro C; Rosenbaum T; Bammert S; Messiaen L; Cooper DN; Kehrer-Sawatzki H
    Genome Biol; 2014 Jun; 15(6):R80. PubMed ID: 24958239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease.
    Chen JM; Stenson PD; Cooper DN; Férec C
    Hum Genet; 2005 Sep; 117(5):411-27. PubMed ID: 15983781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A de novo Alu insertion results in neurofibromatosis type 1.
    Wallace MR; Andersen LB; Saulino AM; Gregory PE; Glover TW; Collins FS
    Nature; 1991 Oct; 353(6347):864-6. PubMed ID: 1719426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. L1 hybridization enrichment: a method for directly accessing de novo L1 insertions in the human germline.
    Freeman P; Macfarlane C; Collier P; Jeffreys AJ; Badge RM
    Hum Mutat; 2011 Aug; 32(8):978-88. PubMed ID: 21560187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of NF1 splicing mutations in Korean patients with neurofibromatosis type 1.
    Jang MA; Kim YE; Kim SK; Lee MK; Kim JW; Ki CS
    J Hum Genet; 2016 Aug; 61(8):705-9. PubMed ID: 27074763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of L1 retrotransposon insertion on transcript processing, localization and accumulation: lessons from the retinal degeneration 7 mouse and implications for the genomic ecology of L1 elements.
    Chen J; Rattner A; Nathans J
    Hum Mol Genet; 2006 Jul; 15(13):2146-56. PubMed ID: 16723373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fifty-four novel mutations in the NF1 gene and integrated analyses of the mutations that modulate splicing.
    Xu W; Yang X; Hu X; Li S
    Int J Mol Med; 2014 Jul; 34(1):53-60. PubMed ID: 24789688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Intronic LINE-1 Insertions in
    Alesi V; Genovese S; Lepri FR; Catino G; Loddo S; Orlando V; Di Tommaso S; Morgia A; Martucci L; Di Donato M; Digilio MC; Dallapiccola B; Novelli A; Capolino R
    Biomolecules; 2023 Apr; 13(5):. PubMed ID: 37238595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential for genomic instability associated with retrotranspositionally-incompetent L1 loci.
    Kines KJ; Sokolowski M; deHaro DL; Christian CM; Belancio VP
    Nucleic Acids Res; 2014; 42(16):10488-502. PubMed ID: 25143528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extensive in silico analysis of NF1 splicing defects uncovers determinants for splicing outcome upon 5' splice-site disruption.
    Wimmer K; Roca X; Beiglböck H; Callens T; Etzler J; Rao AR; Krainer AR; Fonatsch C; Messiaen L
    Hum Mutat; 2007 Jun; 28(6):599-612. PubMed ID: 17311297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transposable elements in disease-associated cryptic exons.
    Vorechovsky I
    Hum Genet; 2010 Feb; 127(2):135-54. PubMed ID: 19823873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Nucleotide Excision Repair Pathway Limits L1 Retrotransposition.
    Servant G; Streva VA; Derbes RS; Wijetunge MI; Neeland M; White TB; Belancio VP; Roy-Engel AM; Deininger PL
    Genetics; 2017 Jan; 205(1):139-153. PubMed ID: 28049704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intronic antisense Alu elements have a negative splicing effect on the inclusion of adjacent downstream exons.
    Nakama M; Otsuka H; Ago Y; Sasai H; Abdelkreem E; Aoyama Y; Fukao T
    Gene; 2018 Jul; 664():84-89. PubMed ID: 29698748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel mutation in the neurofibromatosis type 1 (NF1) gene promotes skipping of two exons by preventing exon definition.
    Fang LJ; Simard MJ; Vidaud D; Assouline B; Lemieux B; Vidaud M; Chabot B; Thirion JP
    J Mol Biol; 2001 Apr; 307(5):1261-70. PubMed ID: 11292340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.