These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 22125667)

  • 1. Vacuole import and degradation pathway: Insights into a specialized autophagy pathway.
    Alibhoy AA; Chiang HL
    World J Biol Chem; 2011 Nov; 2(11):239-45. PubMed ID: 22125667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The TOR complex 1 is required for the interaction of multiple cargo proteins selected for the vacuole import and degradation pathway.
    Alibhoy AA; Chiang HL
    Commun Integr Biol; 2010 Nov; 3(6):594-6. PubMed ID: 21331250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A selective autophagy pathway that degrades gluconeogenic enzymes during catabolite inactivation.
    Brown CR; Chiang HL
    Commun Integr Biol; 2009; 2(2):177-83. PubMed ID: 19513275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The TOR complex 1 is distributed in endosomes and in retrograde vesicles that form from the vacuole membrane and plays an important role in the vacuole import and degradation pathway.
    Brown CR; Hung GC; Dunton D; Chiang HL
    J Biol Chem; 2010 Jul; 285(30):23359-70. PubMed ID: 20457600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vid30 is required for the association of Vid vesicles and actin patches in the vacuole import and degradation pathway.
    Alibhoy AA; Giardina BJ; Dunton DD; Chiang HL
    Autophagy; 2012 Jan; 8(1):29-46. PubMed ID: 22082961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The vacuole import and degradation pathway utilizes early steps of endocytosis and actin polymerization to deliver cargo proteins to the vacuole for degradation.
    Brown CR; Dunton D; Chiang HL
    J Biol Chem; 2010 Jan; 285(2):1516-28. PubMed ID: 19892709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vps34p is required for the decline of extracellular fructose-1,6-bisphosphatase in the vacuole import and degradation pathway.
    Alibhoy AA; Giardina BJ; Dunton DD; Chiang HL
    J Biol Chem; 2012 Sep; 287(39):33080-93. PubMed ID: 22833678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The vacuolar import and degradation pathway merges with the endocytic pathway to deliver fructose-1,6-bisphosphatase to the vacuole for degradation.
    Brown CR; Wolfe AB; Cui D; Chiang HL
    J Biol Chem; 2008 Sep; 283(38):26116-27. PubMed ID: 18660504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fructose-1,6-bisphosphatase, Malate Dehydrogenase, Isocitrate Lyase, Phosphoenolpyruvate Carboxykinase, Glyceraldehyde-3-phosphate Dehydrogenase, and Cyclophilin A are secreted in Saccharomyces cerevisiae grown in low glucose.
    Giardina BJ; Chiang HL
    Commun Integr Biol; 2013 Nov; 6(6):e27216. PubMed ID: 24563717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The endocytosis gene END3 is essential for the glucose-induced rapid decline of small vesicles in the extracellular fraction in Saccharomyces cerevisiae.
    Giardina BJ; Stein K; Chiang HL
    J Extracell Vesicles; 2014; 3():. PubMed ID: 24665361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vid28 protein is required for the association of vacuole import and degradation (Vid) vesicles with actin patches and the retention of Vid vesicle proteins in the intracellular fraction.
    Giardina BJ; Dunton D; Chiang HL
    J Biol Chem; 2013 Apr; 288(17):11636-48. PubMed ID: 23393132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exocytosis and Endocytosis of Small Vesicles across the Plasma Membrane in Saccharomyces cerevisiae.
    Stein K; Chiang HL
    Membranes (Basel); 2014 Sep; 4(3):608-29. PubMed ID: 25192542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical analysis of fructose-1,6-bisphosphatase import into vacuole import and degradation vesicles reveals a role for UBC1 in vesicle biogenesis.
    Shieh HL; Chen Y; Brown CR; Chiang HL
    J Biol Chem; 2001 Mar; 276(13):10398-406. PubMed ID: 11134048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The key gluconeogenic enzyme fructose-1,6-bisphosphatase is secreted during prolonged glucose starvation and is internalized following glucose re-feeding via the non-classical secretory and internalizing pathways in Saccharomyces cerevisiae.
    Giardina BJ; Chiang HL
    Plant Signal Behav; 2013 Aug; 8(8):. PubMed ID: 23673352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events.
    Hung GC; Brown CR; Wolfe AB; Liu J; Chiang HL
    J Biol Chem; 2004 Nov; 279(47):49138-50. PubMed ID: 15358789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vid22p, a novel plasma membrane protein, is required for the fructose-1,6-bisphosphatase degradation pathway.
    Brown CR; McCann JA; Hung GG; Elco CP; Chiang HL
    J Cell Sci; 2002 Feb; 115(Pt 3):655-66. PubMed ID: 11861771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Vid vesicle to vacuole trafficking event requires components of the SNARE membrane fusion machinery.
    Brown CR; Liu J; Hung GC; Carter D; Cui D; Chiang HL
    J Biol Chem; 2003 Jul; 278(28):25688-99. PubMed ID: 12730205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Vid-dependent degradation of FBPase by TCO89, a component of TOR Complex 1.
    Yan Y; Kang B
    Int J Biol Sci; 2010 Jul; 6(4):361-70. PubMed ID: 20617129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The type 1 phosphatase Reg1p-Glc7p is required for the glucose-induced degradation of fructose-1,6-bisphosphatase in the vacuole.
    Cui DY; Brown CR; Chiang HL
    J Biol Chem; 2004 Mar; 279(11):9713-24. PubMed ID: 14684743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome-catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae.
    Hämmerle M; Bauer J; Rose M; Szallies A; Thumm M; Düsterhus S; Mecke D; Entian KD; Wolf DH
    J Biol Chem; 1998 Sep; 273(39):25000-5. PubMed ID: 9737955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.