These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 22126367)

  • 1. Digital selective growth of ZnO nanowire arrays from inkjet-printed nanoparticle seeds on a flexible substrate.
    Ko SH; Lee D; Hotz N; Yeo J; Hong S; Nam KH; Grigoropoulos CP
    Langmuir; 2012 Mar; 28(10):4787-92. PubMed ID: 22126367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct selective growth of ZnO nanowire arrays from inkjet-printed zinc acetate precursor on a heated substrate.
    Kwon J; Hong S; Lee H; Yeo J; Lee SS; Ko SH
    Nanoscale Res Lett; 2013 Nov; 8(1):489. PubMed ID: 24252130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexographic printing-assisted fabrication of ZnO nanowire devices.
    Lloyd JS; Fung CM; Deganello D; Wang RJ; Maffeis TG; Lau SP; Teng KS
    Nanotechnology; 2013 May; 24(19):195602. PubMed ID: 23579099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing.
    Chang YK; Hong FC
    Nanotechnology; 2009 May; 20(19):195302. PubMed ID: 19420638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digital selective growth of a ZnO nanowire array by large scale laser decomposition of zinc acetate.
    Hong S; Yeo J; Manorotkul W; Kang HW; Lee J; Han S; Rho Y; Suh YD; Sung HJ; Ko SH
    Nanoscale; 2013 May; 5(9):3698-703. PubMed ID: 23494004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ZnO nanowire array growth on precisely controlled patterns of inkjet-printed zinc acetate at low-temperatures.
    Tsangarides CP; Ma H; Nathan A
    Nanoscale; 2016 Jun; 8(22):11760-5. PubMed ID: 27223061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterned growth of horizontal ZnO nanowire arrays.
    Xu S; Ding Y; Wei Y; Fang H; Shen Y; Sood AK; Polla DL; Wang ZL
    J Am Chem Soc; 2009 May; 131(19):6670-1. PubMed ID: 19402637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser-Induced Hydrothermal Growth of Heterogeneous Metal-Oxide Nanowire on Flexible Substrate by Laser Absorption Layer Design.
    Yeo J; Hong S; Kim G; Lee H; Suh YD; Park I; Grigoropoulos CP; Ko SH
    ACS Nano; 2015 Jun; 9(6):6059-68. PubMed ID: 26035452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low temperature synthesis and characterization of MgO/ZnO composite nanowire arrays.
    Shimpi P; Gao PX; Goberman DG; Ding Y
    Nanotechnology; 2009 Mar; 20(12):125608. PubMed ID: 19420477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An MRI receiver coil produced by inkjet printing directly on to a flexible substrate.
    Mager D; Peter A; Tin LD; Fischer E; Smith PJ; Hennig J; Korvink JG
    IEEE Trans Med Imaging; 2010 Feb; 29(2):482-7. PubMed ID: 20129848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-temperature large-area fabrication of ZnO nanowires on flexible plastic substrates by solution-processible metal-seeded hydrothermal growth.
    Yoo K; Lee W; Kang K; Kim I; Kang D; Oh DK; Kim MC; Choi H; Kim K; Kim M; Kim JD; Park I; Ok JG
    Nano Converg; 2020 Jul; 7(1):24. PubMed ID: 32661786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices.
    van de Wiel HJ; Galagan Y; van Lammeren TJ; de Riet JF; Gilot J; Nagelkerke MG; Lelieveld RH; Shanmugam S; Pagudala A; Hui D; Groen WA
    Nanotechnology; 2013 Dec; 24(48):484014. PubMed ID: 24196842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Room-temperature, texture-controlled growth of ZnO thin films and their application for growing aligned ZnO nanowire arrays.
    Hong JI; Bae J; Wang ZL; Snyder RL
    Nanotechnology; 2009 Feb; 20(8):085609. PubMed ID: 19417457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires.
    Tian JH; Hu J; Li SS; Zhang F; Liu J; Shi J; Li X; Tian ZQ; Chen Y
    Nanotechnology; 2011 Jun; 22(24):245601. PubMed ID: 21508463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced nucleation, growth rate, and dopant incorporation in ZnO nanowires.
    Cui J; Gibson UJ
    J Phys Chem B; 2005 Nov; 109(46):22074-7. PubMed ID: 16853866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance, all-solution-processed organic nanowire transistor arrays with inkjet-printing patterned electrodes.
    Liu N; Zhou Y; Ai N; Luo C; Peng J; Wang J; Pei J; Cao Y
    Langmuir; 2011 Dec; 27(24):14710-5. PubMed ID: 22043855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling the crack formation in inkjet-printed silver nanoparticle thin-films for high resolution patterning using intense pulsed light treatment.
    Gokhale P; Mitra D; Sowade E; Mitra KY; Gomes HL; Ramon E; Al-Hamry A; Kanoun O; Baumann RR
    Nanotechnology; 2017 Dec; 28(49):495301. PubMed ID: 28994394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct micro/nano metal patterning based on two-step transfer printing of ionic metal nano-ink.
    Kim S; Lee WS; Lee J; Park I
    Nanotechnology; 2012 Jul; 23(28):285301. PubMed ID: 22717381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A flexible proximity sensor fully fabricated by inkjet printing.
    Wang CT; Huang KY; Lin DT; Liao WC; Lin HW; Hu YC
    Sensors (Basel); 2010; 10(5):5054-62. PubMed ID: 22399923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An aqueous ammonia sensor based on an inkjet-printed polyaniline nanoparticle-modified electrode.
    Crowley K; O'Malley E; Morrin A; Smyth MR; Killard AJ
    Analyst; 2008 Mar; 133(3):391-9. PubMed ID: 18299755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.