These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 22126434)
1. ²H solid-state nuclear magnetic resonance investigation of whole Escherichia coli interacting with antimicrobial peptide MSI-78. Pius J; Morrow MR; Booth V Biochemistry; 2012 Jan; 51(1):118-25. PubMed ID: 22126434 [TBL] [Abstract][Full Text] [Related]
2. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes. Lu JX; Damodaran K; Blazyk J; Lorigan GA Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398 [TBL] [Abstract][Full Text] [Related]
3. Using fluorine nuclear magnetic resonance to probe changes in the structure and dynamics of membrane-active peptides interacting with lipid bilayers. Suzuki Y; Buer BC; Al-Hashimi HM; Marsh EN Biochemistry; 2011 Jul; 50(27):5979-87. PubMed ID: 21644540 [TBL] [Abstract][Full Text] [Related]
4. Effect of AMPs MSI-78 and BP100 on the lipid acyl chains of Santisteban NP; Morrow MR; Booth V Biochim Biophys Acta Biomembr; 2020 May; 1862(5):183199. PubMed ID: 31987866 [TBL] [Abstract][Full Text] [Related]
5. Protocols for Studying the Interaction of MSI-78 with the Membranes of Whole Gram-Positive and Gram-Negative Bacteria by NMR. Santisteban NP; Morrow MR; Booth V Methods Mol Biol; 2017; 1548():217-230. PubMed ID: 28013507 [TBL] [Abstract][Full Text] [Related]
6. Solid-state NMR analysis comparing the designer-made antibiotic MSI-103 with its parent peptide PGLa in lipid bilayers. Strandberg E; Kanithasen N; Tiltak D; Bürck J; Wadhwani P; Zwernemann O; Ulrich AS Biochemistry; 2008 Feb; 47(8):2601-16. PubMed ID: 18220419 [TBL] [Abstract][Full Text] [Related]
7. Solution structure and membrane interactions of the antimicrobial peptide fallaxidin 4.1a: an NMR and QCM study. Sherman PJ; Jackway RJ; Gehman JD; Praporski S; McCubbin GA; Mechler A; Martin LL; Separovic F; Bowie JH Biochemistry; 2009 Dec; 48(50):11892-901. PubMed ID: 19894755 [TBL] [Abstract][Full Text] [Related]
8. Structures of the dimeric and monomeric variants of magainin antimicrobial peptides (MSI-78 and MSI-594) in micelles and bilayers, determined by NMR spectroscopy. Porcelli F; Buck-Koehntop BA; Thennarasu S; Ramamoorthy A; Veglia G Biochemistry; 2006 May; 45(18):5793-9. PubMed ID: 16669623 [TBL] [Abstract][Full Text] [Related]
10. Detergent-type membrane fragmentation by MSI-78, MSI-367, MSI-594, and MSI-843 antimicrobial peptides and inhibition by cholesterol: a solid-state nuclear magnetic resonance study. Lee DK; Bhunia A; Kotler SA; Ramamoorthy A Biochemistry; 2015 Mar; 54(10):1897-907. PubMed ID: 25715195 [TBL] [Abstract][Full Text] [Related]
11. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain. Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Wu M; Maier E; Benz R; Hancock RE Biochemistry; 1999 Jun; 38(22):7235-42. PubMed ID: 10353835 [TBL] [Abstract][Full Text] [Related]
14. Solid-state NMR investigation of the membrane-disrupting mechanism of antimicrobial peptides MSI-78 and MSI-594 derived from magainin 2 and melittin. Ramamoorthy A; Thennarasu S; Lee DK; Tan A; Maloy L Biophys J; 2006 Jul; 91(1):206-16. PubMed ID: 16603496 [TBL] [Abstract][Full Text] [Related]
15. Dynamic structure of disulfide-removed linear analogs of tachyplesin-I in the lipid bilayer from solid-state NMR. Doherty T; Waring AJ; Hong M Biochemistry; 2008 Jan; 47(4):1105-16. PubMed ID: 18163648 [TBL] [Abstract][Full Text] [Related]
16. Pore structure, thinning effect, and lateral diffusive dynamics of oriented lipid membranes interacting with antimicrobial peptide protegrin-1: 31P and 2H solid-state NMR study. Wi S; Kim C J Phys Chem B; 2008 Sep; 112(36):11402-14. PubMed ID: 18700738 [TBL] [Abstract][Full Text] [Related]
17. Recent progress on the application of Booth V; Warschawski DE; Santisteban NP; Laadhari M; Marcotte I Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt B):1500-1511. PubMed ID: 28844739 [TBL] [Abstract][Full Text] [Related]
18. The membrane interactions of antimicrobial peptides revealed by solid-state NMR spectroscopy. Bechinger B; Salnikov ES Chem Phys Lipids; 2012 Apr; 165(3):282-301. PubMed ID: 22366307 [TBL] [Abstract][Full Text] [Related]
19. Structure, interactions, and antibacterial activities of MSI-594 derived mutant peptide MSI-594F5A in lipopolysaccharide micelles: role of the helical hairpin conformation in outer-membrane permeabilization. Domadia PN; Bhunia A; Ramamoorthy A; Bhattacharjya S J Am Chem Soc; 2010 Dec; 132(51):18417-28. PubMed ID: 21128620 [TBL] [Abstract][Full Text] [Related]
20. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Ziegler A; Blatter XL; Seelig A; Seelig J Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]