BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22126623)

  • 1. McsA and the roles of metal-binding motif in Staphylococcus aureus.
    Sitthisak S; Kitti T; Boonyonying K; Wozniak D; Mongkolsuk S; Jayaswal RK
    FEMS Microbiol Lett; 2012 Feb; 327(2):126-33. PubMed ID: 22126623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mcsB gene of the clpC operon is required for stress tolerance and virulence in Staphylococcus aureus.
    Wozniak DJ; Tiwari KB; Soufan R; Jayaswal RK
    Microbiology (Reading); 2012 Oct; 158(Pt 10):2568-2576. PubMed ID: 22902728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular characterization of the copper transport system in Staphylococcus aureus.
    Sitthisak S; Knutsson L; Webb JW; Jayaswal RK
    Microbiology (Reading); 2007 Dec; 153(Pt 12):4274-4283. PubMed ID: 18048940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidation of primary (alpha(3)N) and vestigial (alpha(5)) heavy metal-binding sites in Staphylococcus aureus pI258 CadC: evolutionary implications for metal ion selectivity of ArsR/SmtB metal sensor proteins.
    Busenlehner LS; Weng TC; Penner-Hahn JE; Giedroc DP
    J Mol Biol; 2002 Jun; 319(3):685-701. PubMed ID: 12054863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The soft metal ion binding sites in the Staphylococcus aureus pI258 CadC Cd(II)/Pb(II)/Zn(II)-responsive repressor are formed between subunits of the homodimer.
    Wong MD; Lin YF; Rosen BP
    J Biol Chem; 2002 Oct; 277(43):40930-6. PubMed ID: 12176999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of the Staphylococcus aureus pI258 CadC Cd(II)/Pb(II)/Zn(II)-responsive repressor.
    Ye J; Kandegedara A; Martin P; Rosen BP
    J Bacteriol; 2005 Jun; 187(12):4214-21. PubMed ID: 15937183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of bound Zn(II) in the CadC Cd(II)/Pb(II)/Zn(II)-responsive repressor.
    Kandegedara A; Thiyagarajan S; Kondapalli KC; Stemmler TL; Rosen BP
    J Biol Chem; 2009 May; 284(22):14958-65. PubMed ID: 19286656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains.
    Zimmermann M; Clarke O; Gulbis JM; Keizer DW; Jarvis RS; Cobbett CS; Hinds MG; Xiao Z; Wedd AG
    Biochemistry; 2009 Dec; 48(49):11640-54. PubMed ID: 19883117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional characterization of the transcriptional repressor CsoR from Thermus thermophilus HB8.
    Sakamoto K; Agari Y; Agari K; Kuramitsu S; Shinkai A
    Microbiology (Reading); 2010 Jul; 156(Pt 7):1993-2005. PubMed ID: 20395270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A tyrosine kinase and its activator control the activity of the CtsR heat shock repressor in B. subtilis.
    Kirstein J; Zühlke D; Gerth U; Turgay K; Hecker M
    EMBO J; 2005 Oct; 24(19):3435-45. PubMed ID: 16163393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CtsR inactivation during thiol-specific stress in low GC, Gram+ bacteria.
    Elsholz AK; Hempel K; Pöther DC; Becher D; Hecker M; Gerth U
    Mol Microbiol; 2011 Feb; 79(3):772-85. PubMed ID: 21208299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of cysteinyl residues in sensing Pb(II), Cd(II), and Zn(II) by the plasmid pI258 CadC repressor.
    Sun Y; Wong MD; Rosen BP
    J Biol Chem; 2001 May; 276(18):14955-60. PubMed ID: 11278706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative genomics reveal novel heat shock regulatory mechanisms in Staphylococcus aureus and other Gram-positive bacteria.
    Chastanet A; Fert J; Msadek T
    Mol Microbiol; 2003 Feb; 47(4):1061-73. PubMed ID: 12581359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of a cadmium resistance operon in Staphylococcus aureus ATCC12600: CadC does not function as a repressor.
    Hoogewerf AJ; Dyk LA; Buit TS; Roukema D; Resseguie E; Plaisier C; Le N; Heeringa L; Griend DA
    J Basic Microbiol; 2015 Feb; 55(2):148-59. PubMed ID: 25283718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The
    Rosario-Cruz Z; Eletsky A; Daigham NS; Al-Tameemi H; Swapna GVT; Kahn PC; Szyperski T; Montelione GT; Boyd JM
    J Biol Chem; 2019 Mar; 294(11):4027-4044. PubMed ID: 30655293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor.
    Krüger E; Zühlke D; Witt E; Ludwig H; Hecker M
    EMBO J; 2001 Feb; 20(4):852-63. PubMed ID: 11179229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transferrin binding in Staphylococcus aureus: involvement of a cell wall-anchored protein.
    Taylor JM; Heinrichs DE
    Mol Microbiol; 2002 Mar; 43(6):1603-14. PubMed ID: 11952908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in gram-positive bacteria.
    Derré I; Rapoport G; Msadek T
    Mol Microbiol; 1999 Jan; 31(1):117-31. PubMed ID: 9987115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Staphylococcus aureus CsoR regulates both chromosomal and plasmid-encoded copper resistance mechanisms.
    Baker J; Sengupta M; Jayaswal RK; Morrissey JA
    Environ Microbiol; 2011 Sep; 13(9):2495-507. PubMed ID: 21812885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic studies of metal binding and metal selectivity in Bacillus subtilis BSco, a Homologue of the Yeast Mitochondrial Protein Sco1p.
    Andruzzi L; Nakano M; Nilges MJ; Blackburn NJ
    J Am Chem Soc; 2005 Nov; 127(47):16548-58. PubMed ID: 16305244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.