These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 22126723)

  • 1. Leg and joint stiffness in human hopping.
    Kuitunen S; Ogiso K; Komi PV
    Scand J Med Sci Sports; 2011 Dec; 21(6):e159-67. PubMed ID: 22126723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age-related muscle activation profiles and joint stiffness regulation in repetitive hopping.
    Hoffrén M; Ishikawa M; Rantalainen T; Avela J; Komi PV
    J Electromyogr Kinesiol; 2011 Jun; 21(3):483-91. PubMed ID: 21458294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leg stiffness adjustment for a range of hopping frequencies in humans.
    Hobara H; Inoue K; Muraoka T; Omuro K; Sakamoto M; Kanosue K
    J Biomech; 2010 Feb; 43(3):506-11. PubMed ID: 19879582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between pre-landing activities and stiffness regulation of the knee joint musculoskeletal system in the drop jump: implications to performance.
    Horita T; Komi PV; Nicol C; Kyröläinen H
    Eur J Appl Physiol; 2002 Nov; 88(1-2):76-84. PubMed ID: 12436273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of models of vertical, leg, and knee stiffness in adults for running, jumping or hopping tasks.
    Serpell BG; Ball NB; Scarvell JM; Smith PN
    J Sports Sci; 2012; 30(13):1347-63. PubMed ID: 22845059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determinant of leg stiffness during hopping is frequency-dependent.
    Hobara H; Inoue K; Omuro K; Muraoka T; Kanosue K
    Eur J Appl Physiol; 2011 Sep; 111(9):2195-201. PubMed ID: 21318314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in muscle activity with increase in leg stiffness during hopping.
    Hobara H; Kanosue K; Suzuki S
    Neurosci Lett; 2007 May; 418(1):55-9. PubMed ID: 17367931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leg stiffness modulation during exhaustive stretch-shortening cycle exercise.
    Kuitunen S; Kyröläinen H; Avela J; Komi PV
    Scand J Med Sci Sports; 2007 Feb; 17(1):67-75. PubMed ID: 17305941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence of residual force enhancement for multi-joint leg extension.
    Hahn D; Seiberl W; Schmidt S; Schweizer K; Schwirtz A
    J Biomech; 2010 May; 43(8):1503-8. PubMed ID: 20167325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knee stiffness is a major determinant of leg stiffness during maximal hopping.
    Hobara H; Muraoka T; Omuro K; Gomi K; Sakamoto M; Inoue K; Kanosue K
    J Biomech; 2009 Aug; 42(11):1768-71. PubMed ID: 19486983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leg stiffness adjustment during hopping at different intensities and frequencies.
    Mrdakovic V; Ilic D; Vulovic R; Matic M; Jankovic N; Filipovic N
    Acta Bioeng Biomech; 2014; 16(3):69-76. PubMed ID: 25308379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute and prolonged reduction in joint stiffness in humans after exhausting stretch-shortening cycle exercise.
    Kuitunen S; Avela J; Kyröläinen H; Nicol C; Komi PV
    Eur J Appl Physiol; 2002 Nov; 88(1-2):107-16. PubMed ID: 12436277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. During step descent, older adults exhibit decreased knee range of motion and increased vastus lateralis muscle activity.
    Saywell N; Taylor D; Boocock M
    Gait Posture; 2012 Jul; 36(3):490-4. PubMed ID: 22682787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor readiness and joint torque production in lower limbs of older women fallers and non-fallers.
    Crozara LF; Morcelli MH; Marques NR; Hallal CZ; Spinoso DH; de Almeida Neto AF; Cardozo AC; Gonçalves M
    J Electromyogr Kinesiol; 2013 Oct; 23(5):1131-8. PubMed ID: 23747140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle coordination is key to the power output and mechanical efficiency of limb movements.
    Wakeling JM; Blake OM; Chan HK
    J Exp Biol; 2010 Feb; 213(3):487-92. PubMed ID: 20086134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromuscular changes for hopping on a range of damped surfaces.
    Moritz CT; Greene SM; Farley CT
    J Appl Physiol (1985); 2004 May; 96(5):1996-2004. PubMed ID: 14688034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute effects of stretching on the neuromechanical properties of the triceps surae muscle complex.
    Cornwell A; Nelson AG; Sidaway B
    Eur J Appl Physiol; 2002 Mar; 86(5):428-34. PubMed ID: 11882929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic ankle and hopping leg-spring stiffness in distance runners and aerobic gymnasts.
    Rabita G; Couturier A; Lambertz D
    Int J Sports Med; 2011 Jul; 32(7):552-8. PubMed ID: 21563039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calibration of EMG to force for knee muscles is applicable with submaximal voluntary contractions.
    Doorenbosch CA; Joosten A; Harlaar J
    J Electromyogr Kinesiol; 2005 Aug; 15(4):429-35. PubMed ID: 15811613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscular torque generation during imposed joint rotation: torque-angle relationships when subjects' only goal is to make a constant effort.
    Burgess PR; Jones LF; Buhler CF; Dewald JP; Zhang LQ; Rymer WZ
    Somatosens Mot Res; 2002; 19(4):327-40. PubMed ID: 12590834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.