These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 22126742)
1. Microfluidic device for recreating a tumor microenvironment in vitro. Toley BJ; Ganz DE; Walsh CL; Forbes NS J Vis Exp; 2011 Nov; (57):. PubMed ID: 22126742 [TBL] [Abstract][Full Text] [Related]
2. A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics. Walsh CL; Babin BM; Kasinskas RW; Foster JA; McGarry MJ; Forbes NS Lab Chip; 2009 Feb; 9(4):545-54. PubMed ID: 19190790 [TBL] [Abstract][Full Text] [Related]
3. On-chip anticancer drug test of regular tumor spheroids formed in microwells by a distributive microchannel network. Kim C; Bang JH; Kim YE; Lee SH; Kang JY Lab Chip; 2012 Oct; 12(20):4135-42. PubMed ID: 22864534 [TBL] [Abstract][Full Text] [Related]
4. Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform. Sabhachandani P; Motwani V; Cohen N; Sarkar S; Torchilin V; Konry T Lab Chip; 2016 Feb; 16(3):497-505. PubMed ID: 26686985 [TBL] [Abstract][Full Text] [Related]
5. A microfluidic platform for chemoresistive testing of multicellular pleural cancer spheroids. Ruppen J; Cortes-Dericks L; Marconi E; Karoubi G; Schmid RA; Peng R; Marti TM; Guenat OT Lab Chip; 2014 Mar; 14(6):1198-205. PubMed ID: 24496222 [TBL] [Abstract][Full Text] [Related]
6. Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing. Yu L; Chen MC; Cheung KC Lab Chip; 2010 Sep; 10(18):2424-32. PubMed ID: 20694216 [TBL] [Abstract][Full Text] [Related]
7. Digital microfluidics for automated hanging drop cell spheroid culture. Aijian AP; Garrell RL J Lab Autom; 2015 Jun; 20(3):283-95. PubMed ID: 25510471 [TBL] [Abstract][Full Text] [Related]
8. iTRAQ Quantitative Proteomic Profiling and MALDI-MSI of Colon Cancer Spheroids Treated with Combination Chemotherapies in a 3D Printed Fluidic Device. LaBonia GJ; Ludwig KR; Mousseau CB; Hummon AB Anal Chem; 2018 Jan; 90(2):1423-1430. PubMed ID: 29227110 [TBL] [Abstract][Full Text] [Related]
9. Alginate-based microfluidic system for tumor spheroid formation and anticancer agent screening. Chen MC; Gupta M; Cheung KC Biomed Microdevices; 2010 Aug; 12(4):647-54. PubMed ID: 20237849 [TBL] [Abstract][Full Text] [Related]
10. Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Wu LY; Di Carlo D; Lee LP Biomed Microdevices; 2008 Apr; 10(2):197-202. PubMed ID: 17965938 [TBL] [Abstract][Full Text] [Related]
11. Formation of size-controllable tumour spheroids using a microfluidic pillar array (μFPA) device. Lim W; Hoang HH; You D; Han J; Lee JE; Kim S; Park S Analyst; 2018 Nov; 143(23):5841-5848. PubMed ID: 30379148 [TBL] [Abstract][Full Text] [Related]
12. Robotic printing and drug testing of 384-well tumor spheroids. Ham SL; Thakuri PS; Tavana H Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2183-6. PubMed ID: 26736723 [TBL] [Abstract][Full Text] [Related]
13. In vitro lung cancer multicellular tumor spheroid formation using a microfluidic device. Lee SW; Hong S; Jung B; Jeong SY; Byeon JH; Jeong GS; Choi J; Hwang C Biotechnol Bioeng; 2019 Nov; 116(11):3041-3052. PubMed ID: 31294818 [TBL] [Abstract][Full Text] [Related]
14. Analysis of Cancer Cell Invasion and Anti-metastatic Drug Screening Using Hydrogel Micro-chamber Array (HMCA)-based Plates. Ravid-Hermesh O; Zurgil N; Shafran Y; Afrimzon E; Sobolev M; Hakuk Y; Bar-On Eizig Z; Deutsch M J Vis Exp; 2018 Oct; (140):. PubMed ID: 30417872 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic Biopsy Trapping Device for the Real-Time Monitoring of Tumor Microenvironment. Holton AB; Sinatra FL; Kreahling J; Conway AJ; Landis DA; Altiok S PLoS One; 2017; 12(1):e0169797. PubMed ID: 28085924 [TBL] [Abstract][Full Text] [Related]
16. Diffusion-based culture and real-time impedance monitoring of tumor spheroids in hydrogel microwells of a suspended membrane under microfluidic conditions. Wang W; Liu Y; Huang X; Liang F; Luo H; Mao Z; Shi J; Wang L; Peng J; Chen Y Talanta; 2024 Oct; 278():126473. PubMed ID: 38950503 [TBL] [Abstract][Full Text] [Related]
17. High-throughput analysis of cell-cell crosstalk in ad hoc designed microfluidic chips for oncoimmunology applications. Mencattini A; De Ninno A; Mancini J; Businaro L; Martinelli E; Schiavoni G; Mattei F Methods Enzymol; 2020; 632():479-502. PubMed ID: 32000911 [TBL] [Abstract][Full Text] [Related]
18. Mimicking Tumors: Toward More Predictive In Vitro Models for Peptide- and Protein-Conjugated Drugs. van den Brand D; Massuger LF; Brock R; Verdurmen WP Bioconjug Chem; 2017 Mar; 28(3):846-856. PubMed ID: 28122451 [TBL] [Abstract][Full Text] [Related]
19. Microfluidic technique to measure intratumoral transport and calculate drug efficacy shows that binding is essential for doxorubicin and release hampers Doxil. Toley BJ; Tropeano Lovatt ZG; Harrington JL; Forbes NS Integr Biol (Camb); 2013 Sep; 5(9):1184-96. PubMed ID: 23860772 [TBL] [Abstract][Full Text] [Related]
20. Real-time viability and apoptosis kinetic detection method of 3D multicellular tumor spheroids using the Celigo Image Cytometer. Kessel S; Cribbes S; Bonasu S; Rice W; Qiu J; Chan LL Cytometry A; 2017 Sep; 91(9):883-892. PubMed ID: 28618188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]