BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 22127162)

  • 1. Effect of regional climate warming on the phenology of butterflies in boreal forests in Manitoba, Canada.
    Westwood AR; Blair D
    Environ Entomol; 2010 Aug; 39(4):1122-33. PubMed ID: 22127162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in butterfly abundance in response to global warming and reforestation.
    Kwon TS; Kim SS; Chun JH; Byun BK; Lim JH; Shin JH
    Environ Entomol; 2010 Apr; 39(2):337-45. PubMed ID: 20388261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album.
    Braschler B; Hill JK
    J Anim Ecol; 2007 May; 76(3):415-23. PubMed ID: 17439459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in net ecosystem productivity of boreal black spruce stands in response to changes in temperature at diurnal and seasonal time scales.
    Grant RF; Margolis HA; Barr AG; Black TA; Dunn AL; Bernier PY; Bergeron O
    Tree Physiol; 2009 Jan; 29(1):1-17. PubMed ID: 19203928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined effects of climate and biotic interactions on the elevational range of a phytophagous insect.
    Merrill RM; Gutiérrez D; Lewis OT; Gutiérrez J; Díez SB; Wilson RJ
    J Anim Ecol; 2008 Jan; 77(1):145-55. PubMed ID: 18177334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tell me what you eat and I'll tell you when you fly: diet can predict phenological changes in response to climate change.
    Altermatt F
    Ecol Lett; 2010 Dec; 13(12):1475-84. PubMed ID: 20937056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Winter chilling speeds spring development of temperate butterflies.
    Stålhandske S; Gotthard K; Leimar O
    J Anim Ecol; 2017 Jul; 86(4):718-729. PubMed ID: 28466477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the universal ecological responses to climate change in a univoltine butterfly.
    Fenberg PB; Self A; Stewart JR; Wilson RJ; Brooks SJ
    J Anim Ecol; 2016 May; 85(3):739-48. PubMed ID: 26876243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flowering time of butterfly nectar food plants is more sensitive to temperature than the timing of butterfly adult flight.
    Kharouba HM; Vellend M
    J Anim Ecol; 2015 Sep; 84(5):1311-21. PubMed ID: 25823582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the sensitivity of butterfly phenology to temperature over the past century.
    Kharouba HM; Paquette SR; Kerr JT; Vellend M
    Glob Chang Biol; 2014 Feb; 20(2):504-14. PubMed ID: 24249425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Net carbon dioxide losses of northern ecosystems in response to autumn warming.
    Piao S; Ciais P; Friedlingstein P; Peylin P; Reichstein M; Luyssaert S; Margolis H; Fang J; Barr A; Chen A; Grelle A; Hollinger DY; Laurila T; Lindroth A; Richardson AD; Vesala T
    Nature; 2008 Jan; 451(7174):49-52. PubMed ID: 18172494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of urban expansion and a changing climate to decline of a butterfly fauna.
    Casner KL; Forister ML; O'Brien JM; Thorne J; Waetjen D; Shapiro AM
    Conserv Biol; 2014 Jun; 28(3):773-82. PubMed ID: 24527888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining population-dynamic and ecophysiological models to predict climate-induced insect range shifts.
    Crozier L; Dwyer G
    Am Nat; 2006 Jun; 167(6):853-66. PubMed ID: 16685639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate effects on late-season flight times of Massachusetts butterflies.
    Zipf L; Williams EH; Primack RB; Stichter S
    Int J Biometeorol; 2017 Sep; 61(9):1667-1673. PubMed ID: 28382376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies.
    Radchuk V; Turlure C; Schtickzelle N
    J Anim Ecol; 2013 Jan; 82(1):275-85. PubMed ID: 22924795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests.
    Richardson AD; Hollinger DY; Dail DB; Lee JT; Munger JW; O'keefe J
    Tree Physiol; 2009 Mar; 29(3):321-31. PubMed ID: 19203967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenological synchrony between a butterfly and its host plants: Experimental test of effects of spring temperature.
    Posledovich D; Toftegaard T; Wiklund C; Ehrlén J; Gotthard K
    J Anim Ecol; 2018 Jan; 87(1):150-161. PubMed ID: 29048758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changing habitat associations of a thermally constrained species, the silver-spotted skipper butterfly, in response to climate warming.
    Davies ZG; Wilson RJ; Coles S; Thomas CD
    J Anim Ecol; 2006 Jan; 75(1):247-56. PubMed ID: 16903062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking inter-annual variation in environment, phenology, and abundance for a montane butterfly community.
    Stewart JE; Illán JG; Richards SA; Gutiérrez D; Wilson RJ
    Ecology; 2020 Jan; 101(1):e02906. PubMed ID: 31560801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate change implications of shifting forest management strategy in a boreal forest ecosystem of Norway.
    Bright RM; Antón-Fernández C; Astrup R; Cherubini F; Kvalevåg M; Strømman AH
    Glob Chang Biol; 2014 Feb; 20(2):607-21. PubMed ID: 24277242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.