These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 22127395)
21. Controlled defects in semiconducting carbon nanotubes promote efficient generation and luminescence of trions. Brozena AH; Leeds JD; Zhang Y; Fourkas JT; Wang Y ACS Nano; 2014 May; 8(5):4239-47. PubMed ID: 24669843 [TBL] [Abstract][Full Text] [Related]
22. Exciton migration by ultrafast Förster transfer in highly doped matrixes. Schlosser M; Lochbrunner S J Phys Chem B; 2006 Mar; 110(12):6001-9. PubMed ID: 16553409 [TBL] [Abstract][Full Text] [Related]
23. Raman and fluorescence spectroscopic studies of a DNA-dispersed double-walled carbon nanotube solution. Kim JH; Kataoka M; Shimamoto D; Muramatsu H; Jung YC; Hayashi T; Kim YA; Endo M; Park JS; Saito R; Terrones M; Dresselhaus MS ACS Nano; 2010 Feb; 4(2):1060-6. PubMed ID: 20112962 [TBL] [Abstract][Full Text] [Related]
24. Formation of single-walled carbon nanotube thin films enriched with semiconducting nanotubes and their application in photoelectrochemical devices. Wei L; Tezuka N; Umeyama T; Imahori H; Chen Y Nanoscale; 2011 Apr; 3(4):1845-9. PubMed ID: 21384044 [TBL] [Abstract][Full Text] [Related]
25. Insertion of C50 into single-walled carbon nanotubes: Selectivity in interwall spacing and C50 isomers. Zhou Z; Zhao J; Schleyer Pv; Chen Z J Comput Chem; 2008 Apr; 29(5):781-7. PubMed ID: 17876758 [TBL] [Abstract][Full Text] [Related]
26. Ultrafast Exciton Hopping Observed in Bare Semiconducting Carbon Nanotube Thin Films with Two-Dimensional White-Light Spectroscopy. Mehlenbacher RD; Wang J; Kearns NM; Shea MJ; Flach JT; McDonough TJ; Wu MY; Arnold MS; Zanni MT J Phys Chem Lett; 2016 Jun; 7(11):2024-31. PubMed ID: 27182690 [TBL] [Abstract][Full Text] [Related]
27. Electron transport in very clean, as-grown suspended carbon nanotubes. Cao J; Wang Q; Dai H Nat Mater; 2005 Oct; 4(10):745-9. PubMed ID: 16142240 [TBL] [Abstract][Full Text] [Related]
28. Optical microcavity with semiconducting single-wall carbon nanotubes. Gaufrès E; Izard N; Le Roux X; Kazaoui S; Marris-Morini D; Cassan E; Vivien L Opt Express; 2010 Mar; 18(6):5740-5. PubMed ID: 20389590 [TBL] [Abstract][Full Text] [Related]
29. Exciton binding energy in semiconducting single-walled carbon nanotubes. Ma YZ; Valkunas L; Bachilo SM; Fleming GR J Phys Chem B; 2005 Aug; 109(33):15671-4. PubMed ID: 16852986 [TBL] [Abstract][Full Text] [Related]
31. Chirality enriched (12,1) and (11,3) single-walled carbon nanotubes for biological imaging. Diao S; Hong G; Robinson JT; Jiao L; Antaris AL; Wu JZ; Choi CL; Dai H J Am Chem Soc; 2012 Oct; 134(41):16971-4. PubMed ID: 23033937 [TBL] [Abstract][Full Text] [Related]
32. The optical resonances in carbon nanotubes arise from excitons. Wang F; Dukovic G; Brus LE; Heinz TF Science; 2005 May; 308(5723):838-41. PubMed ID: 15879212 [TBL] [Abstract][Full Text] [Related]
33. Tuning of sorted double-walled carbon nanotubes by electrochemical charging. Kalbac M; Green AA; Hersam MC; Kavan L ACS Nano; 2010 Jan; 4(1):459-69. PubMed ID: 20050694 [TBL] [Abstract][Full Text] [Related]
34. Double-walled carbon nanotubes: challenges and opportunities. Shen C; Brozena AH; Wang Y Nanoscale; 2011 Feb; 3(2):503-18. PubMed ID: 21042608 [TBL] [Abstract][Full Text] [Related]
35. Electron correlation effects on the femtosecond dephasing dynamics of E22 excitons in (6,5) carbon nanotubes. Schneck JR; Walsh AG; Green AA; Hersam MC; Ziegler LD; Swan AK J Phys Chem A; 2011 Apr; 115(16):3917-23. PubMed ID: 21241060 [TBL] [Abstract][Full Text] [Related]
36. On the applicability of cluster models to study the chemical reactivity of carbon nanotubes. Denis PA; Iribarne F J Comput Chem; 2011 Aug; 32(11):2397-403. PubMed ID: 21598274 [TBL] [Abstract][Full Text] [Related]
37. Local field effects in the energy transfer between a chromophore and a carbon nanotube: a single-nanocompound investigation. Roquelet C; Vialla F; Diederichs C; Roussignol P; Delalande C; Deleporte E; Lauret JS; Voisin C ACS Nano; 2012 Oct; 6(10):8796-802. PubMed ID: 23005601 [TBL] [Abstract][Full Text] [Related]
38. Energy gaps in "metallic" single-walled carbon nanotubes. Ouyang M; Huang JL; Cheung CL; Lieber CM Science; 2001 Apr; 292(5517):702-5. PubMed ID: 11326093 [TBL] [Abstract][Full Text] [Related]
39. Electron-electron interaction effects on the photophysics of metallic single-walled carbon nanotubes. Wang Z; Psiachos D; Badilla RF; Mazumdar S J Phys Condens Matter; 2009 Mar; 21(9):095009. PubMed ID: 21817382 [TBL] [Abstract][Full Text] [Related]
40. Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy. Mehlenbacher RD; McDonough TJ; Grechko M; Wu MY; Arnold MS; Zanni MT Nat Commun; 2015 Apr; 6():6732. PubMed ID: 25865487 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]