These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 22127580)
1. The cross-validated AUC for MCP-logistic regression with high-dimensional data. Jiang D; Huang J; Zhang Y Stat Methods Med Res; 2013 Oct; 22(5):505-18. PubMed ID: 22127580 [TBL] [Abstract][Full Text] [Related]
2. An empirical approach to model selection through validation for censored survival data. Choi I; Wells BJ; Yu C; Kattan MW J Biomed Inform; 2011 Aug; 44(4):595-606. PubMed ID: 21335102 [TBL] [Abstract][Full Text] [Related]
3. Performance comparison between Logistic regression, decision trees, and multilayer perceptron in predicting peripheral neuropathy in type 2 diabetes mellitus. Li CP; Zhi XY; Ma J; Cui Z; Zhu ZL; Zhang C; Hu LP Chin Med J (Engl); 2012 Mar; 125(5):851-7. PubMed ID: 22490586 [TBL] [Abstract][Full Text] [Related]
4. A permutation approach for selecting the penalty parameter in penalized model selection. Sabourin JA; Valdar W; Nobel AB Biometrics; 2015 Dec; 71(4):1185-94. PubMed ID: 26243050 [TBL] [Abstract][Full Text] [Related]
5. Majorization Minimization by Coordinate Descent for Concave Penalized Generalized Linear Models. Jiang D; Huang J Stat Comput; 2014 Sep; 24(5):871-883. PubMed ID: 25309048 [TBL] [Abstract][Full Text] [Related]
6. AucPR: an AUC-based approach using penalized regression for disease prediction with high-dimensional omics data. Yu W; Park T BMC Genomics; 2014; 15 Suppl 10(Suppl 10):S1. PubMed ID: 25559769 [TBL] [Abstract][Full Text] [Related]
7. VARIABLE SELECTION FOR HIGH DIMENSIONAL MULTIVARIATE OUTCOMES. Sofer T; Dicker L; Lin X Stat Sin; 2014 Oct; 24(4):1633-1654. PubMed ID: 28642637 [TBL] [Abstract][Full Text] [Related]
8. Empirical extensions of the lasso penalty to reduce the false discovery rate in high-dimensional Cox regression models. Ternès N; Rotolo F; Michiels S Stat Med; 2016 Jul; 35(15):2561-73. PubMed ID: 26970107 [TBL] [Abstract][Full Text] [Related]
9. Regularized ROC method for disease classification and biomarker selection with microarray data. Ma S; Huang J Bioinformatics; 2005 Dec; 21(24):4356-62. PubMed ID: 16234316 [TBL] [Abstract][Full Text] [Related]
10. Classification algorithms based on anterior segment optical coherence tomography measurements for detection of angle closure. Nongpiur ME; Haaland BA; Friedman DS; Perera SA; He M; Foo LL; Baskaran M; Sakata LM; Wong TY; Aung T Ophthalmology; 2013 Jan; 120(1):48-54. PubMed ID: 23009888 [TBL] [Abstract][Full Text] [Related]
11. Sparse logistic regression with Lp penalty for biomarker identification. Liu Z; Jiang F; Tian G; Wang S; Sato F; Meltzer SJ; Tan M Stat Appl Genet Mol Biol; 2007; 6():Article6. PubMed ID: 17402921 [TBL] [Abstract][Full Text] [Related]
12. Comparison of model selection for regression. Cherkassky V; Ma Y Neural Comput; 2003 Jul; 15(7):1691-714. PubMed ID: 12816572 [TBL] [Abstract][Full Text] [Related]
13. Newton-Raphson Meets Sparsity: Sparse Learning Via a Novel Penalty and a Fast Solver. Cao Y; Kang L; Li X; Liu Y; Luo Y; Shi Y IEEE Trans Neural Netw Learn Syst; 2024 Sep; 35(9):12057-12067. PubMed ID: 37028319 [TBL] [Abstract][Full Text] [Related]
14. COORDINATE DESCENT ALGORITHMS FOR NONCONVEX PENALIZED REGRESSION, WITH APPLICATIONS TO BIOLOGICAL FEATURE SELECTION. Breheny P; Huang J Ann Appl Stat; 2011 Jan; 5(1):232-253. PubMed ID: 22081779 [TBL] [Abstract][Full Text] [Related]
15. Gene selection in cancer classification using sparse logistic regression with Bayesian regularization. Cawley GC; Talbot NL Bioinformatics; 2006 Oct; 22(19):2348-55. PubMed ID: 16844704 [TBL] [Abstract][Full Text] [Related]
16. Variable selection and estimation in generalized linear models with the seamless Li Z; Wang S; Lin X Can J Stat; 2012 Dec; 40(4):745-769. PubMed ID: 23519603 [TBL] [Abstract][Full Text] [Related]
17. An extension of the receiver operating characteristic curve and AUC-optimal classification. Takenouchi T; Komori O; Eguchi S Neural Comput; 2012 Oct; 24(10):2789-824. PubMed ID: 22734493 [TBL] [Abstract][Full Text] [Related]
18. A Confidence Region Approach to Tuning for Variable Selection. Gunes F; Bondell HD J Comput Graph Stat; 2012; 21(2):295-314. PubMed ID: 23407768 [TBL] [Abstract][Full Text] [Related]
19. Bias in error estimation when using cross-validation for model selection. Varma S; Simon R BMC Bioinformatics; 2006 Feb; 7():91. PubMed ID: 16504092 [TBL] [Abstract][Full Text] [Related]
20. Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Vrieze SI Psychol Methods; 2012 Jun; 17(2):228-43. PubMed ID: 22309957 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]