These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22127790)

  • 1. Switchable electrode interfaces controlled by physical, chemical and biological signals.
    Bocharova V; Katz E
    Chem Rec; 2012 Feb; 12(1):114-30. PubMed ID: 22127790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofuel cells controlled by logically processed biochemical signals: towards physiologically regulated bioelectronic devices.
    Katz E; Pita M
    Chemistry; 2009 Nov; 15(46):12554-64. PubMed ID: 19876982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrode interfaces switchable by physical and chemical signals for biosensing, biofuel, and biocomputing applications.
    Katz E; Minko S; Halámek J; MacVittie K; Yancey K
    Anal Bioanal Chem; 2013 Apr; 405(11):3659-72. PubMed ID: 23143006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioelectrocatalytic system coupled with enzyme-based biocomputing ensembles performing boolean logic operations: approaching "smart" physiologically controlled biointerfaces.
    Zhou J; Tam TK; Pita M; Ornatska M; Minko S; Katz E
    ACS Appl Mater Interfaces; 2009 Jan; 1(1):144-9. PubMed ID: 20355766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofuel cell controlled by enzyme logic systems.
    Amir L; Tam TK; Pita M; Meijler MM; Alfonta L; Katz E
    J Am Chem Soc; 2009 Jan; 131(2):826-32. PubMed ID: 19105750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responsive interface switchable by logically processed physiological signals: toward "smart" actuators for signal amplification and drug delivery.
    Privman M; Tam TK; Bocharova V; Halámek J; Wang J; Katz E
    ACS Appl Mater Interfaces; 2011 May; 3(5):1620-3. PubMed ID: 21452844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme-based logic systems interfaced with signal-responsive materials and electrodes.
    Katz E; Minko S
    Chem Commun (Camb); 2015 Feb; 51(17):3493-500. PubMed ID: 25578785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-powered electrochemical memristor based on a biofuel cell--towards memristors integrated with biocomputing systems.
    MacVittie K; Katz E
    Chem Commun (Camb); 2014 May; 50(37):4816-9. PubMed ID: 24687004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Switchable electrode controlled by enzyme logic network system: approaching physiologically regulated bioelectronics.
    Privman M; Tam TK; Pita M; Katz E
    J Am Chem Soc; 2009 Jan; 131(3):1314-21. PubMed ID: 19113843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible "closing" of an electrode interface functionalized with a polymer brush by an electrochemical signal.
    Tam TK; Pita M; Trotsenko O; Motornov M; Tokarev I; Halámek J; Minko S; Katz E
    Langmuir; 2010 Mar; 26(6):4506-13. PubMed ID: 20000630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofuel cell controlled by enzyme logic network--approaching physiologically regulated devices.
    Tam TK; Pita M; Ornatska M; Katz E
    Bioelectrochemistry; 2009 Sep; 76(1-2):4-9. PubMed ID: 19351582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Switchable Bioelectrocatalysis Controlled by Dual Stimuli-Responsive Polymeric Interface.
    Parlak O; Ashaduzzaman M; Kollipara SB; Tiwari A; Turner AP
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):23837-47. PubMed ID: 26440202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Switchable electrode controlled by Boolean logic gates using enzymes as input signals.
    Wang X; Zhou J; Tam TK; Katz E; Pita M
    Bioelectrochemistry; 2009 Nov; 77(1):69-73. PubMed ID: 19622418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substance Release Triggered by Biomolecular Signals in Bioelectronic Systems.
    Katz E; Pingarrón JM; Mailloux S; Guz N; Gamella M; Melman G; Melman A
    J Phys Chem Lett; 2015 Apr; 6(8):1340-7. PubMed ID: 26263133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optoelectronic properties of nanostructured ensembles controlled by biomolecular logic systems.
    Pita M; Krämer M; Zhou J; Poghossian A; Schöning MJ; Fernández VM; Katz E
    ACS Nano; 2008 Oct; 2(10):2160-6. PubMed ID: 19206463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ca
    Koushanpour A; Gamella M; Guo Z; Honarvarfard E; Poghossian A; Schöning MJ; Alexandrov K; Katz E
    J Phys Chem B; 2017 Dec; 121(51):11465-11471. PubMed ID: 29185751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems: enhanced performance of biofuel cells.
    Katz E; Lioubashevski O; Willner I
    J Am Chem Soc; 2005 Mar; 127(11):3979-88. PubMed ID: 15771535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated, electrically contacted NAD(P)+-dependent enzyme-carbon nanotube electrodes for biosensors and biofuel cell applications.
    Yan YM; Yehezkeli O; Willner I
    Chemistry; 2007; 13(36):10168-75. PubMed ID: 17937376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimuli responsive polymers for nanoengineering of biointerfaces.
    Zapotoczny S
    Methods Mol Biol; 2012; 811():51-78. PubMed ID: 22042672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual magnetobiochemical logic control of electrochemical processes based on local interfacial pH changes.
    Pita M; Tam TK; Minko S; Katz E
    ACS Appl Mater Interfaces; 2009 Jun; 1(6):1166-8. PubMed ID: 20355908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.