These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22127790)

  • 21. A new synthesis route for Os-complex modified redox polymers for potential biofuel cell applications.
    Pöller S; Beyl Y; Vivekananthan J; Guschin DA; Schuhmann W
    Bioelectrochemistry; 2012 Oct; 87():178-84. PubMed ID: 22209452
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Minimizing losses in bio-electrochemical systems: the road to applications.
    Clauwaert P; Aelterman P; Pham TH; De Schamphelaire L; Carballa M; Rabaey K; Verstraete W
    Appl Microbiol Biotechnol; 2008 Jul; 79(6):901-13. PubMed ID: 18506439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A biofuel cell with electrochemically switchable and tunable power output.
    Katz E; Willner I
    J Am Chem Soc; 2003 Jun; 125(22):6803-13. PubMed ID: 12769592
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stimuli-responsive interfaces and systems for the control of protein-surface and cell-surface interactions.
    Cole MA; Voelcker NH; Thissen H; Griesser HJ
    Biomaterials; 2009 Mar; 30(9):1827-50. PubMed ID: 19144401
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-powered biomolecular keypad lock security system based on a biofuel cell.
    Halámek J; Tam TK; Strack G; Bocharova V; Pita M; Katz E
    Chem Commun (Camb); 2010 Apr; 46(14):2405-7. PubMed ID: 20379542
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemically driven, electrode-addressable formation of functionalized polydopamine films for neural interfaces.
    Kang K; Lee S; Kim R; Choi IS; Nam Y
    Angew Chem Int Ed Engl; 2012 Dec; 51(52):13101-4. PubMed ID: 23161792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conjugated polymers and an iron complex as electrocatalytic materials for an enzyme-based biofuel cell.
    Noh HB; Won MS; Hwang J; Kwon NH; Shin SC; Shim YB
    Biosens Bioelectron; 2010 Mar; 25(7):1735-41. PubMed ID: 20080397
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simultaneous determination of catecholamines, uric acid and ascorbic acid at physiological levels using poly(N-methylpyrrole)/Pd-nanoclusters sensor.
    Atta NF; El-Kady MF; Galal A
    Anal Biochem; 2010 May; 400(1):78-88. PubMed ID: 20064483
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polymeric bionanocomposite cast thin films with in situ laccase-catalyzed polymerization of dopamine for biosensing and biofuel cell applications.
    Tan Y; Deng W; Li Y; Huang Z; Meng Y; Xie Q; Ma M; Yao S
    J Phys Chem B; 2010 Apr; 114(15):5016-24. PubMed ID: 20337455
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide.
    Zhou M; Zhai Y; Dong S
    Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stimuli-responsive surfaces for bio-applications.
    Mendes PM
    Chem Soc Rev; 2008 Nov; 37(11):2512-29. PubMed ID: 18949123
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strategies for "wiring" redox-active proteins to electrodes and applications in biosensors, biofuel cells, and nanotechnology.
    Nöll T; Nöll G
    Chem Soc Rev; 2011 Jul; 40(7):3564-76. PubMed ID: 21509355
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics.
    Willner I; Baron R; Willner B
    Biosens Bioelectron; 2007 Apr; 22(9-10):1841-52. PubMed ID: 17071070
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biofuel cell logically controlled by antigen-antibody recognition: towards immune-regulated bioelectronic devices.
    Tam TK; Strack G; Pita M; Katz E
    J Am Chem Soc; 2009 Aug; 131(33):11670-1. PubMed ID: 19673516
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conducting polymers for neural interfaces: challenges in developing an effective long-term implant.
    Green RA; Lovell NH; Wallace GG; Poole-Warren LA
    Biomaterials; 2008; 29(24-25):3393-9. PubMed ID: 18501423
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of redox polymer and enzyme co-immobilization on carbon electrodes to provide membrane-less glucose/O2 enzymatic fuel cells with improved power output and stability.
    Rengaraj S; Kavanagh P; Leech D
    Biosens Bioelectron; 2011 Dec; 30(1):294-9. PubMed ID: 22005596
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biofuel cells and their development.
    Bullen RA; Arnot TC; Lakeman JB; Walsh FC
    Biosens Bioelectron; 2006 May; 21(11):2015-45. PubMed ID: 16569499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enzymatic versus microbial bio-catalyzed electrodes in bio-electrochemical systems.
    Lapinsonnière L; Picot M; Barrière F
    ChemSusChem; 2012 Jun; 5(6):995-1005. PubMed ID: 22674690
    [TBL] [Abstract][Full Text] [Related]  

  • 39. pH-Controllable on-off bioelectrocatalysis of bienzyme layer-by-layer films assembled by concanavalin A and glucoenzymes with an electroactive mediator.
    Yao H; Hu N
    J Phys Chem B; 2010 Aug; 114(30):9926-33. PubMed ID: 20617850
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzyme containing redox polymer networks for biosensors or biofuel cells: a photochemical approach.
    Bunte C; Prucker O; König T; Rühe J
    Langmuir; 2010 Apr; 26(8):6019-27. PubMed ID: 20039603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.