These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22127935)

  • 21. Effect of motor-based speech intervention on articulatory placement in the treatment of a posterior nasal fricative: a preliminary MRI study on a single subject.
    Mason KN; Pua E; Perry JL
    Int J Lang Commun Disord; 2018 Jul; 53(4):852-863. PubMed ID: 29781570
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automatic segmentation of vocal tract articulators in real-time magnetic resonance imaging.
    Ribeiro V; Isaieva K; Leclere J; Felblinger J; Vuissoz PA; Laprie Y
    Comput Methods Programs Biomed; 2024 Jan; 243():107907. PubMed ID: 37976615
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Positional targets for lingual consonants defined using electromagnetic articulography.
    Yunusova Y; Rosenthal JS; Rudy K; Baljko M; Daskalogiannakis J
    J Acoust Soc Am; 2012 Aug; 132(2):1027-38. PubMed ID: 22894223
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real-time magnetic resonance imaging investigation of resonance tuning in soprano singing.
    Bresch E; Narayanan S
    J Acoust Soc Am; 2010 Nov; 128(5):EL335-41. PubMed ID: 21110548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lower Vocal Tract Morphologic Adjustments Are Relevant for Voice Timbre in Singing.
    Mainka A; Poznyakovskiy A; Platzek I; Fleischer M; Sundberg J; Mürbe D
    PLoS One; 2015; 10(7):e0132241. PubMed ID: 26186691
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electropalatographic specification of Croatian fricatives /s/ and /z/.
    Liker M; Horga D; Mildner V
    Clin Linguist Phon; 2012 Mar; 26(3):199-215. PubMed ID: 21967279
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward dynamic magnetic resonance imaging of the vocal tract during speech production.
    Ventura SM; Freitas DR; Tavares JM
    J Voice; 2011 Jul; 25(4):511-8. PubMed ID: 20471801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of consonant manner and vowel height on intraoral pressure and articulatory contact at voicing offset and onset for voiceless obstruents.
    Koenig LL; Fuchs S; Lucero JC
    J Acoust Soc Am; 2011 May; 129(5):3233-44. PubMed ID: 21568425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential articulatory movements during Japanese /s/ and /t/ as revealed by MR image sequences with tooth visualization.
    Ng IW; Ono T; Inoue-Arai MS; Honda E; Kurabayashi T; Moriyama K
    Arch Oral Biol; 2012 Jun; 57(6):749-59. PubMed ID: 22138260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vocal tract configurations in tenors' passaggio in different vowel conditions-a real-time magnetic resonance imaging study.
    Echternach M; Traser L; Richter B
    J Voice; 2014 Mar; 28(2):262.e1-262.e8. PubMed ID: 24412038
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vocal tract and register changes analysed by real-time MRI in male professional singers-a pilot study.
    Echternach M; Sundberg J; Arndt S; Breyer T; Markl M; Schumacher M; Richter B
    Logoped Phoniatr Vocol; 2008; 33(2):67-73. PubMed ID: 18569645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tongue-Palate Contact Timing during /s/ and /z/ in English.
    Liker M; Gibbon FE
    Phonetica; 2018; 75(2):110-131. PubMed ID: 29433122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Evaluation of the vocal tract during Japanese vowel production in myasthenia gravis using magnetic resonance imaging].
    Kinoshita Y; Yasukouchi H; Tsuru E; Tanaka R; Matsushima Y
    No To Shinkei; 2004 Oct; 56(10):891-5. PubMed ID: 15609678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new method for the study of velopharyngeal function using gated magnetic resonance imaging.
    Kane AA; Butman JA; Mullick R; Skopec M; Choyke P
    Plast Reconstr Surg; 2002 Feb; 109(2):472-81. PubMed ID: 11818823
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The dynamics of voiceless sibilant fricative production in children between 7 and 13 years old: An ultrasound and acoustic study.
    Zharkova N; Hardcastle WJ; Gibbon FE
    J Acoust Soc Am; 2018 Sep; 144(3):1454. PubMed ID: 30424626
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Speech production real-time MRI at 0.55 T.
    Lim Y; Kumar P; Nayak KS
    Magn Reson Med; 2024 Jan; 91(1):337-343. PubMed ID: 37799039
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recognition of vowels from information in fricatives: perceptual evidence of fricative-vowel coarticulation.
    Yeni-Komshian GH; Soli SD
    J Acoust Soc Am; 1981 Oct; 70(4):966-75. PubMed ID: 7288043
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Fast Semiautomatic Algorithm for Centerline-Based Vocal Tract Segmentation.
    Poznyakovskiy AA; Mainka A; Platzek I; Mürbe D
    Biomed Res Int; 2015; 2015():906356. PubMed ID: 26557710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Real-time MRI and articulatory coordination in speech.
    Demolin D; Hassid S; Metens T; Soquet A
    C R Biol; 2002 Apr; 325(4):547-56. PubMed ID: 12161933
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variability in fricative production and spectra: implications for the hyper- and hypo- and quantal theories of speech production.
    Tabain M
    Lang Speech; 2001 Mar; 44(Pt 1):57-94. PubMed ID: 11430188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.