These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22127992)

  • 1. A processing platform for optoelectronic/optogenetic retinal prosthesis.
    Al-Atabany W; McGovern B; Mehran K; Berlinguer-Palmini R; Degenaar P
    IEEE Trans Biomed Eng; 2013 Mar; 60(3):781-91. PubMed ID: 22127992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraspectral Imaging for Improving the Perceived Information Presented in Retinal Prosthesis.
    Al-Atabany W; Al Yaman M; Degenaar P
    J Healthc Eng; 2018; 2018():3493826. PubMed ID: 29849997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Image processing system of visual prostheses based on digital signal processor DM642].
    Xie C; Lu Y; Gu Y; Wang J; Chai X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2011 Sep; 35(5):330-4. PubMed ID: 22242377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A system verification platform for high-density epiretinal prostheses.
    Chen K; Lo YK; Yang Z; Weiland JD; Humayun MS; Liu W
    IEEE Trans Biomed Circuits Syst; 2013 Jun; 7(3):326-37. PubMed ID: 23853332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image Processing Strategies Based on a Visual Saliency Model for Object Recognition Under Simulated Prosthetic Vision.
    Wang J; Li H; Fu W; Chen Y; Li L; Lyu Q; Han T; Chai X
    Artif Organs; 2016 Jan; 40(1):94-100. PubMed ID: 25981202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Image processing strategies based on visual attention models under simulated prosthetic vision].
    Fu W; Wang J; Lu Y; Wu H; Chai X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2013 May; 37(3):199-202. PubMed ID: 24015615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image processing for a high-resolution optoelectronic retinal prosthesis.
    Asher A; Segal WA; Baccus SA; Yaroslavsky LP; Palanker DV
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):993-1004. PubMed ID: 17554819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image recognition with a limited number of pixels for visual prostheses design.
    Li S; Hu J; Chai X; Peng Y
    Artif Organs; 2012 Mar; 36(3):266-74. PubMed ID: 21954832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Embedded Real-Time Processing Platform for Optogenetic Neuroprosthetic Applications.
    Yan B; Nirenberg S
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):233-243. PubMed ID: 29035219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Optogenetics and prosthetic treatment of retinal degeneration].
    Kirpichnikov MP; Ostrovskiy MA
    Vestn Oftalmol; 2015; 131(3):99-111. PubMed ID: 26310015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An image processing approach for blind mobility facilitated through visual intracortical stimulation.
    Mohammadi HM; Ghafar-Zadeh E; Sawan M
    Artif Organs; 2012 Jul; 36(7):616-28. PubMed ID: 22428560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An image-processing strategy to extract important information suitable for a low-size stimulus pattern in a retinal prosthesis.
    Chen Y; Fu J; Chu D; Li R; Xie Y
    Biomed Tech (Berl); 2017 Nov; 62(6):591-598. PubMed ID: 28258971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulated Prosthetic Vision: The Benefits of Computer-Based Object Recognition and Localization.
    Macé MJ; Guivarch V; Denis G; Jouffrais C
    Artif Organs; 2015 Jul; 39(7):E102-13. PubMed ID: 25900238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Face recognition in simulated prosthetic vision: face detection-based image processing strategies.
    Wang J; Wu X; Lu Y; Wu H; Kan H; Chai X
    J Neural Eng; 2014 Aug; 11(4):046009. PubMed ID: 24921713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In the spotlight: biomedical signal processing--a well established discipline or a paradigm to promising integrated visions?
    Cerutti S
    IEEE Rev Biomed Eng; 2009; 2():9-11. PubMed ID: 22275038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis.
    Chader GJ; Weiland J; Humayun MS
    Prog Brain Res; 2009; 175():317-32. PubMed ID: 19660665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of visually guided tasks using simulated prosthetic vision and saliency-based cues.
    Parikh N; Itti L; Humayun M; Weiland J
    J Neural Eng; 2013 Apr; 10(2):026017. PubMed ID: 23449023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optogenetic approaches to retinal prosthesis.
    Barrett JM; Berlinguer-Palmini R; Degenaar P
    Vis Neurosci; 2014 Sep; 31(4-5):345-54. PubMed ID: 25100257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smart image processing system for retinal prosthesis.
    Weiland JD; Parikh N; Pradeep V; Medioni G
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():300-3. PubMed ID: 23365889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interpretation of the Lempel-Ziv complexity measure in the context of biomedical signal analysis.
    Aboy M; Hornero R; Abásolo D; Alvarez D
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2282-8. PubMed ID: 17073334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.