These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22128535)

  • 1. Humic acid and metal ions accelerating the dechlorination of 4-chlorobiphenyl by nanoscale zero-valent iron.
    Wang Y; Zhou D; Wang Y; Zhu X; Jin S
    J Environ Sci (China); 2011; 23(8):1286-92. PubMed ID: 22128535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism of 2-chlorobiphenyl oxidative degradation by nanoscale zero-valent iron in the presence of dissolved oxygen.
    Wang Y; Liu L; Fang G; Wang L; Kengara FO; Zhu C
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2265-2272. PubMed ID: 29119491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dechlorination of short chain chlorinated paraffins by nanoscale zero-valent iron.
    Zhang ZY; Lu M; Zhang ZZ; Xiao M; Zhang M
    J Hazard Mater; 2012 Dec; 243():105-11. PubMed ID: 23107289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron.
    Doong RA; Lai YL
    Chemosphere; 2006 Jun; 64(3):371-8. PubMed ID: 16466778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic pH control system enhances the dechlorination of 2,4,4'-trichlorobiphenyl and extracted PCBs from contaminated soil by nanoscale Fe⁰ and Pd/Fe⁰.
    Wang Y; Zhou D; Wang Y; Wang L; Cang L
    Environ Sci Pollut Res Int; 2012 Feb; 19(2):448-57. PubMed ID: 21822927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of reaction environments on the reactivity of PCB (2-chlorobiphenyl) over activated carbon impregnated with palladized iron.
    Choi H; Al-Abed SR
    J Hazard Mater; 2010 Jul; 179(1-3):869-74. PubMed ID: 20388583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of aging and oxidation of palladized iron embedded in activated carbon on the dechlorination of 2-chlorobiphenyl.
    Choi H; Al-Abed SR; Agarwal S
    Environ Sci Technol; 2009 Jun; 43(11):4137-42. PubMed ID: 19569342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between pollutants during the removal of polychlorinated biphenyl-heavy metal combined pollution by modified nanoscale zero-valent iron.
    Lou Y; Cai Y; Tong Y; Hsieh L; Li X; Xu W; Shi K; Shen C; Xu X; Lou L
    Sci Total Environ; 2019 Jul; 673():120-127. PubMed ID: 30981919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of various ions on the dechlorination kinetics of hexachlorobenzene by nanoscale zero-valent iron.
    Su YF; Hsu CY; Shih YH
    Chemosphere; 2012 Sep; 88(11):1346-52. PubMed ID: 22704216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistical enhancement by Ni2+ and Tween-80 of nanoscale zerovalent iron dechlorination of 2,2',5,5'-tetrachlorinated biphenyl in aqueous solution.
    Wu Y; Wu Z; Huang X; Simonnot MO; Zhang T; Qiu R
    Environ Sci Pollut Res Int; 2015 Jan; 22(1):555-64. PubMed ID: 25087495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid.
    Kim HS; Ahn JY; Kim C; Lee S; Hwang I
    Chemosphere; 2014 Oct; 113():93-100. PubMed ID: 25065795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution.
    Dong H; Zhang C; Deng J; Jiang Z; Zhang L; Cheng Y; Hou K; Tang L; Zeng G
    Water Res; 2018 May; 135():1-10. PubMed ID: 29438739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of 2-ClBP from soil-water system using activated carbon supported nanoscale zerovalent iron.
    Zhang W; Yu T; Han X; Ying W
    J Environ Sci (China); 2016 Sep; 47():143-152. PubMed ID: 27593281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of iron-carbon materials on microbial-catalyzed reductive dechlorination of polychlorinated biphenyls in Taihu Lake sediment microcosms: Enhanced chlorine removal, detoxification and shifts of microbial community.
    Xu Y; Tang Y; Xu L; Wang Y; Liu Z; Qin Q
    Sci Total Environ; 2021 Oct; 792():148454. PubMed ID: 34465049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of humic acid and clay content on the transport of polymer-coated iron nanoparticles through sand.
    Jung B; O'Carroll D; Sleep B
    Sci Total Environ; 2014 Oct; 496():155-164. PubMed ID: 25079234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced reductive dechlorination of polychlorinated biphenyl-contaminated soil by in-vessel anaerobic composting with zero-valent iron.
    Long YY; Zhang C; Du Y; Tao XQ; Shen DS
    Environ Sci Pollut Res Int; 2014 Mar; 21(6):4783-92. PubMed ID: 24363050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deactivation of nanoscale zero-valent iron by humic acid and by retention in water.
    Kim DG; Hwang YH; Shin HS; Ko SO
    Environ Technol; 2013; 34(9-12):1625-35. PubMed ID: 24191498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of groundwater geochemistry on pentachlorophenol remediation by smectite-templated nanosized Pd0/Fe0.
    Jia H; Gu C; Li H; Fan X; Li S; Wang C
    Environ Sci Pollut Res Int; 2012 Sep; 19(8):3498-505. PubMed ID: 22528999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of atrazine by nanoscale zero valent iron supported on organobentonite.
    Zhang Y; Li Y; Zheng X
    Sci Total Environ; 2011 Jan; 409(3):625-30. PubMed ID: 21093019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of nanoscale zero-valent iron to enhance the removal efficiencies of heavy metals from polluted soils by organic acids.
    Cao Y; Zhang S; Zhong Q; Wang G; Xu X; Li T; Wang L; Jia Y; Li Y
    Ecotoxicol Environ Saf; 2018 Oct; 162():464-473. PubMed ID: 30015193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.