BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 22128537)

  • 1. Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes.
    Dolar D; Vuković A; Asperger D; Kosutić K
    J Environ Sci (China); 2011; 23(8):1299-307. PubMed ID: 22128537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of multiple pesticides from water by different types of membranes.
    Seah MQ; Ng ZC; Lai GS; Lau WJ; Al-Ghouti MA; Alias NH; Ismail AF
    Chemosphere; 2024 May; 356():141960. PubMed ID: 38604517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fouling behavior of nanofiltration membrane during the refining treatment of morphlines-dominant reverse osmosis concentrate.
    Li Y; Dong Y; Chen S; Wu Y; Wang J; Nie Y
    J Environ Manage; 2024 Jul; 364():121443. PubMed ID: 38878575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purifying surface water contaminated with azo dyes using nanofiltration: Interactions between dyes and dissolved organic matter.
    Jawaduddin M; Su Z; Siddique MS; Rashid S; Yu W
    Chemosphere; 2024 Aug; 361():142438. PubMed ID: 38797203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding Rejection Mechanisms of Trace Organic Contaminants by Polyamide Membranes via Data-Knowledge Codriven Machine Learning.
    Wang H; Zeng J; Dai R; Wang Z
    Environ Sci Technol; 2024 Apr; 58(13):5878-5888. PubMed ID: 38498471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced properties of a positive-charged nanofiltration membrane containing quaternarized chitosan through second interfacial polymerization for the removal of salts and pharmaceuticals.
    Bai X; Lu Y; Wang M; Yu X; Huang Z
    Water Sci Technol; 2024 Apr; 89(8):2020-2034. PubMed ID: 38678406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trade-off between Endocrine-Disrupting Compound Removal and Water Permeance of the Polyamide Nanofiltration Membrane: Phenomenon and Molecular Insights.
    Chen J; Wang T; Dai R; Wu Z; Wang Z
    Environ Sci Technol; 2024 May; 58(21):9416-9426. PubMed ID: 38662937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Commercial reverse osmosis point-of-use systems in Egypt failed to purify tap water.
    Gad M; Marouf MA; Abogabal A; Hu A; Nabet N
    J Water Health; 2024 May; 22(5):905-922. PubMed ID: 38822469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of strontium by nanofiltration: Role of complexation and speciation of strontium with organic matter.
    Cai YH; Gopalakrishnan A; Dong Q; Schäfer AI
    Water Res; 2024 Apr; 253():121241. PubMed ID: 38377922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study on the monovalent and divalent cation separation of polymeric films and membranes from salt solutions under diffusion-dialysis.
    Acar S; Cengİz HY; ErgÜn A; Konyali E; DelİgÖz H
    Turk J Chem; 2020; 44(4):1134-1147. PubMed ID: 33488218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting micropollutant removal through nanopore-sized membranes using several machine-learning approaches based on feature engineering.
    Yogarathinam LT; Abba SI; Usman J; Lawal DU; Aljundi IH
    RSC Adv; 2024 Jun; 14(27):19331-19348. PubMed ID: 38887641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale modelling of transport in polymer-based reverse-osmosis/nanofiltration membranes: present and future.
    Zhu H; Szymczyk A; Ghoufi A
    Discov Nano; 2024 May; 19(1):91. PubMed ID: 38771417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tutorial review of error evaluation in experimental water research at the example of membrane filtration.
    Imbrogno A; Nguyen MN; Schäfer AI
    Chemosphere; 2024 Jun; 357():141833. PubMed ID: 38579944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal, Adsorption, and Cleaning of Pharmaceutical on Polyamide RO and NF Membranes.
    Dolar D; Ćurić I; Ašperger D
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavior of Mebendazole during NF/RO Adsorption and Photolysis.
    Babić B; Andrić D; Farkaš A; Vuk D; Ašperger D; Dolar D
    Membranes (Basel); 2022 Sep; 12(9):. PubMed ID: 36135907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sustainable approach for the removal methods and analytical determination methods of antiviral drugs from water/wastewater: A review.
    Eryildiz B; Yavuzturk Gul B; Koyuncu I
    J Water Process Eng; 2022 Oct; 49():103036. PubMed ID: 35966450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Polymer Membrane Properties on the Removal of Pharmaceuticals.
    Żyłła R; Foszpańczyk M; Kamińska I; Kudzin M; Balcerzak J; Ledakowicz S
    Membranes (Basel); 2022 Jan; 12(2):. PubMed ID: 35207072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence, Fate, Effects, and Risks of Dexamethasone: Ecological Implications Post-COVID-19.
    Musee N; Kebaabetswe LP; Tichapondwa S; Tubatsi G; Mahaye N; Leareng SK; Nomngongo PN
    Int J Environ Res Public Health; 2021 Oct; 18(21):. PubMed ID: 34769808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence of Antibiotics, Antibiotic Resistance Genes and Viral Genomes in Wastewater Effluents and Their Treatment by a Pilot Scale Nanofiltration Unit.
    Cristóvão MB; Tela S; Silva AF; Oliveira M; Bento-Silva A; Bronze MR; Crespo MTB; Crespo JG; Nunes M; Pereira VJ
    Membranes (Basel); 2020 Dec; 11(1):. PubMed ID: 33374743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Design as a Tool for Optimizing and Predicting the Nanofiltration Performance by Treating Antibiotic-Containing Wastewater.
    de Souza DI; Giacobbo A; da Silva Fernandes E; Rodrigues MAS; de Pinho MN; Bernardes AM
    Membranes (Basel); 2020 Jul; 10(7):. PubMed ID: 32707699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.