These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22128747)

  • 1. Characterization of cellular senescence mechanisms in human corneal endothelial cells.
    Sheerin AN; Smith SK; Jennert-Burston K; Brook AJ; Allen MC; Ibrahim B; Jones D; Wallis C; Engelmann K; Rhys-Williams W; Faragher RG; Kipling D
    Aging Cell; 2012 Apr; 11(2):234-40. PubMed ID: 22128747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishment of functioning human corneal endothelial cell line with high growth potential.
    Yokoi T; Seko Y; Yokoi T; Makino H; Hatou S; Yamada M; Kiyono T; Umezawa A; Nishina H; Azuma N
    PLoS One; 2012; 7(1):e29677. PubMed ID: 22276123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of senescence-related genes in human corneal endothelial cells.
    Song Z; Wang Y; Xie L; Zang X; Yin H
    Mol Vis; 2008 Jan; 14():161-70. PubMed ID: 18334933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Telomerase immortalization of human corneal endothelial cells yields functional hexagonal monolayers.
    Schmedt T; Chen Y; Nguyen TT; Li S; Bonanno JA; Jurkunas UV
    PLoS One; 2012; 7(12):e51427. PubMed ID: 23284695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kojic acid inhibits senescence of human corneal endothelial cells via NF-κB and p21 signaling pathways.
    Wei X; Luo D; Yan Y; Yu H; Sun L; Wang C; Song F; Ge H; Qian H; Li X; Tang X; Liu P
    Exp Eye Res; 2019 Mar; 180():174-183. PubMed ID: 30597146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proliferative capacity of corneal endothelial cells.
    Joyce NC
    Exp Eye Res; 2012 Feb; 95(1):16-23. PubMed ID: 21906590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manufacturing of human corneal endothelial grafts.
    Zhu YT; Tighe S; Chen SL; Zhang Y; Chen SY; Kao WWY; Tseng SCG
    Ocul Surf; 2023 Jul; 29():301-310. PubMed ID: 37268293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for a CDK4-dependent checkpoint in a conditional model of cellular senescence.
    Brookes S; Gagrica S; Sanij E; Rowe J; Gregory FJ; Hara E; Peters G
    Cell Cycle; 2015; 14(8):1164-73. PubMed ID: 25695870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age and topographical comparison of telomere lengths in human corneal endothelial cells.
    Konomi K; Joyce NC
    Mol Vis; 2007 Jul; 13():1251-8. PubMed ID: 17679950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of corneas reconstructed with cultured human corneal endothelial cells and human corneal stroma.
    Amano S; Mimura T; Yamagami S; Osakabe Y; Miyata K
    Jpn J Ophthalmol; 2005; 49(6):448-452. PubMed ID: 16365789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential protein expression in human corneal endothelial cells cultured from young and older donors.
    Zhu C; Rawe I; Joyce NC
    Mol Vis; 2008; 14():1805-14. PubMed ID: 18852868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A two-stage, p16(INK4A)- and p53-dependent keratinocyte senescence mechanism that limits replicative potential independent of telomere status.
    Rheinwald JG; Hahn WC; Ramsey MR; Wu JY; Guo Z; Tsao H; De Luca M; Catricalà C; O'Toole KM
    Mol Cell Biol; 2002 Jul; 22(14):5157-72. PubMed ID: 12077343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TRPV channels mediate temperature-sensing in human corneal endothelial cells.
    Mergler S; Valtink M; Coulson-Thomas VJ; Lindemann D; Reinach PS; Engelmann K; Pleyer U
    Exp Eye Res; 2010 Jun; 90(6):758-70. PubMed ID: 20338165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Cultured human corneal endothelial cell transplantation].
    Mimura T
    Nippon Ganka Gakkai Zasshi; 2006 Nov; 110(11):879-97. PubMed ID: 17134036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospects for endothelial transplantation.
    Engelmann K; Bednarz J; Valtink M
    Exp Eye Res; 2004 Mar; 78(3):573-8. PubMed ID: 15106937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corneal endothelial regeneration and tissue engineering.
    Mimura T; Yamagami S; Amano S
    Prog Retin Eye Res; 2013 Jul; 35():1-17. PubMed ID: 23353595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mucin gene expression in immortalized human corneal-limbal and conjunctival epithelial cell lines.
    Gipson IK; Spurr-Michaud S; Argüeso P; Tisdale A; Ng TF; Russo CL
    Invest Ophthalmol Vis Sci; 2003 Jun; 44(6):2496-506. PubMed ID: 12766048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of cell cycle-associated proteins in human and rabbit corneal endothelium in situ.
    Joyce NC; Navon SE; Roy S; Zieske JD
    Invest Ophthalmol Vis Sci; 1996 Jul; 37(8):1566-75. PubMed ID: 8675399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioengineered multilayered human corneas from discarded human corneal tissue.
    Zhang Z; Niu G; Choi JS; Giegengack M; Atala A; Soker S
    Biomed Mater; 2015 Jun; 10(3):035012. PubMed ID: 26106974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High expression of p16INK4a and low expression of Bmi1 are associated with endothelial cellular senescence in the human cornea.
    Wang Y; Zang X; Wang Y; Chen P
    Mol Vis; 2012; 18():803-15. PubMed ID: 22509111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.