These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 22128996)
1. Low noise measurement system for determination of the critical currents in superconducting tapes by a pulse method. Ciszek M; Trojanowski S Rev Sci Instrum; 2011 Nov; 82(11):114701. PubMed ID: 22128996 [TBL] [Abstract][Full Text] [Related]
2. Switchable wiring for high-resolution electronic measurements at very low temperatures. Schirm C; Pernau HF; Scheer E Rev Sci Instrum; 2009 Feb; 80(2):024704. PubMed ID: 19256670 [TBL] [Abstract][Full Text] [Related]
3. Kiloampere, Variable-Temperature, Critical-Current Measurements of High-Field Superconductors. Goodrich LF; Cheggour N; Stauffer TC; Filla BJ; Lu XF J Res Natl Inst Stand Technol; 2013; 118():301-52. PubMed ID: 26401435 [TBL] [Abstract][Full Text] [Related]
4. Design and testing of a system for measuring high-frequency AC losses in superconducting wires and coils carrying DC and AC currents. Nikulshin Y; Ginodman V; Friedman A; Yeshurun Y; Wolfus S Rev Sci Instrum; 2019 Jun; 90(6):065111. PubMed ID: 31255017 [TBL] [Abstract][Full Text] [Related]
5. High current variable temperature electrical characterization system for superconducting wires and tapes with continuous sample rotation in a split coil magnet. Lao M; Hänisch J; Kauffmann-Weiss S; Gehring R; Fillinger H; Drechsler A; Holzapfel B Rev Sci Instrum; 2019 Jan; 90(1):015106. PubMed ID: 30709201 [TBL] [Abstract][Full Text] [Related]
6. A superconducting transformer system for high current cable testing. Godeke A; Dietderich DR; Joseph JM; Lizarazo J; Prestemon SO; Miller G; Weijers HW Rev Sci Instrum; 2010 Mar; 81(3):035107. PubMed ID: 20370213 [TBL] [Abstract][Full Text] [Related]
7. Simple method to measure the thermal conductivity of technical superconductors, e.g., NbTi. Schmidt C Rev Sci Instrum; 1979 Apr; 50(4):454. PubMed ID: 18699530 [TBL] [Abstract][Full Text] [Related]
8. Precise in situ tuning of the critical current of a superconducting nanowire using high bias voltage pulses. Aref T; Bezryadin A Nanotechnology; 2011 Sep; 22(39):395302. PubMed ID: 21891860 [TBL] [Abstract][Full Text] [Related]
9. Continuous critical current measurement of high-temperature superconductor tapes with magnetic substrates using magnetic-circuit method. Zou SN; Gu C; Qu TM; Han Z Rev Sci Instrum; 2013 Oct; 84(10):105106. PubMed ID: 24182162 [TBL] [Abstract][Full Text] [Related]
10. Patch clamp analysis of Na channel gating in mammalian myocardium: reconstruction of double pulse inactivation and voltage dependence of Na currents. Benndorf K Gen Physiol Biophys; 1988 Aug; 7(4):353-77. PubMed ID: 2846409 [TBL] [Abstract][Full Text] [Related]
11. A cryogen-free dilution refrigerator based Josephson qubit measurement system. Tian Y; Yu HF; Deng H; Xue GM; Liu DT; Ren YF; Chen GH; Zheng DN; Jing XN; Lu L; Zhao SP; Han S Rev Sci Instrum; 2012 Mar; 83(3):033907. PubMed ID: 22462938 [TBL] [Abstract][Full Text] [Related]
12. Progress on the Fabrication of Superconducting Wires and Tapes via Hot Isostatic Pressing. Lei Z; Yao C; Guo W; Wang D; Ma Y Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902902 [TBL] [Abstract][Full Text] [Related]
13. Reverse current pulse method to restore uniform concentration profiles in ion-selective membranes. 2. Comparison of the efficiency of the different protocols. Zook JM; Lindner E Anal Chem; 2009 Jul; 81(13):5155-64. PubMed ID: 19459602 [TBL] [Abstract][Full Text] [Related]
14. Superconducting current path and flux line shape in NbTiTa obtained by inter-diffusion process. Bormio-Nunes C; Ghivelder L J Phys Condens Matter; 2008 Nov; 20(46):465222. PubMed ID: 21693860 [TBL] [Abstract][Full Text] [Related]
15. Real-time imaging of the spatial distribution of rf-heating in NMR samples during broadband decoupling. Wimmer R; Wider G J Magn Reson; 2007 Aug; 187(2):184-92. PubMed ID: 17507272 [TBL] [Abstract][Full Text] [Related]
16. Investigation and optimization of low-frequency noise performance in readout electronics of dc superconducting quantum interference device. Zhao J; Zhang Y; Lee YH; Krause HJ Rev Sci Instrum; 2014 May; 85(5):054707. PubMed ID: 24880395 [TBL] [Abstract][Full Text] [Related]
17. Calorimetric method of ac loss measurement in a rotating magnetic field. Ghoshal PK; Coombs TA; Campbell AM Rev Sci Instrum; 2010 Jul; 81(7):074702. PubMed ID: 20687748 [TBL] [Abstract][Full Text] [Related]
18. Determining transthoracic impedance, delivered energy, and peak current during defibrillation episodes. Jones VC; Charbonnier FM; Long P Med Instrum; 1981; 15(6):380-2. PubMed ID: 7339468 [TBL] [Abstract][Full Text] [Related]
19. A hot probe setup for the measurement of Seebeck coefficient of thin wires and thin films using integral method. Kumar SR; Kasiviswanathan S Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):024302. PubMed ID: 18315317 [TBL] [Abstract][Full Text] [Related]
20. A direct tensile device to investigate the critical current properties in superconducting tapes. Zhang X; Liu W; Zhou J; Yue D; Wang J; Liu C; Huang Y; Liu Y; Zhou Y Rev Sci Instrum; 2014 Feb; 85(2):025103. PubMed ID: 24593392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]