BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 2212932)

  • 21. Thyroid hormone receptors of developing chick brain are predominantly in the neurons.
    Haidar MA; Dube S; Sarkar PK
    Biochem Biophys Res Commun; 1983 Apr; 112(1):221-7. PubMed ID: 6301499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thyroid hormone metabolism in neuron-enriched primary cultures of fetal rat brain cells.
    Courtin F; Chantoux F; Francon J
    Mol Cell Endocrinol; 1988 Jul; 58(1):73-84. PubMed ID: 3208989
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of 3,5,3'-triiodothyronine receptors in primary cultures of hepatocytes and neurons from chick embryo.
    Gagnon J; Gallo-Payet N; Lehoux JG; Belisle S; Bellabarba D
    Gen Comp Endocrinol; 1992 Feb; 85(2):193-207. PubMed ID: 1601252
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regional distribution of nuclear T3 receptors in rat brain and evidence for preferential localization in neurons.
    Ruel J; Faure R; Dussault JH
    J Endocrinol Invest; 1985 Aug; 8(4):343-8. PubMed ID: 2999210
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High affinity 3,5,3'-L-triiodothyronine binding to synaptosomes in rat cerebral cortex.
    Mashio Y; Inada M; Tanaka K; Ishii H; Naito K; Nishikawa M; Takahashi K; Imura H
    Endocrinology; 1982 Apr; 110(4):1257-61. PubMed ID: 7060525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nuclear triiodothyronine binding in mononuclear leukocytes in normal subjects and obese patients before and after fasting.
    Buergi U; Larsen PR
    J Clin Endocrinol Metab; 1982 Jun; 54(6):1199-205. PubMed ID: 6176590
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nuclear binding of thyroid hormones and activity of malic enzyme and ornithine decarboxylase in rat liver during postnatal development.
    Knopp J; Brtko J
    Endocrinol Exp; 1990 Dec; 24(4):429-35. PubMed ID: 2096077
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uptake of triiodothyronine and triiodothyroacetic acid in neonatal rat cardiomyocytes: effects of metabolites and analogs.
    Verhoeven FA; Van der Putten HH; Hennemann G; Lamers JM; Visser TJ; Everts ME
    J Endocrinol; 2002 May; 173(2):247-55. PubMed ID: 12010632
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thyroxine, triiodothyronine, and reverse triiodothyronine processing in the cerebellum: autoradiographic studies in adult rats.
    Dratman MB; Crutchfield FL
    Endocrinology; 1989 Sep; 125(3):1723-33. PubMed ID: 2759043
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alterations of serum concentrations of thyroid hormones and sex hormone-binding globulin, nuclear binding of tri-iodothyronine and thyroid hormone-stimulated cellular uptake of oxygen and glucose in mononuclear blood cells from patients with non-thyroidal illness.
    Kvetny J; Matzen L
    J Endocrinol; 1990 Mar; 124(3):495-9. PubMed ID: 2332718
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nuclear triiodothyronine receptor in differentiating preadipocytes cloned from obese and lean mice.
    Anselmet A; Gharbi-Chihi J; Torresani J
    Endocrinology; 1984 Feb; 114(2):450-6. PubMed ID: 6317354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of a cytosolic triiodothyronine binding protein in atrium and ventricle of rat heart with different sensitivity toward thyroid hormone levels.
    Osty J; Rappaport L; Samuel JL; Lennon AM
    Endocrinology; 1988 Mar; 122(3):1027-33. PubMed ID: 3342743
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The specific binding of the thyroid hormones to matrix isolated from rat liver nuclei.
    Wilson BD; Albrecht CF; Wium CA
    S Afr Med J; 1982 Jan; 61(2):44-9. PubMed ID: 6277016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relationship of receptor affinity to the modulation of thyroid hormone nuclear receptor levels and growth hormone synthesis by L-triiodothyronine and iodothyronine analogues in cultured GH1 cells.
    Samuels HH; Stanley F; Casanova J
    J Clin Invest; 1979 Jun; 63(6):1229-40. PubMed ID: 221536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Specific nuclear binding sites of triiodothyronine and reverse triiodothyronine in rat and pork liver: similarities and discrepancies.
    Wiersinga WM; Chopra IJ; Solomon DH
    Endocrinology; 1982 Jun; 110(6):2052-8. PubMed ID: 7075548
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ontogeny, regional distribution and properties of thyroid-hormone receptors in the developing chick brain.
    Haidar MA; Sarkar PK
    Biochem J; 1984 Jun; 220(2):547-52. PubMed ID: 6331419
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thyroxine action on the rat liver nuclear thyroid-hormone receptors. Binding of thyroxine to the nuclear non-histone protein and induction of mitochondrial alpha-glycerophosphate dehydrogenase activity.
    Yoshimasa Y; Hamada S
    Biochem J; 1983 Feb; 210(2):331-7. PubMed ID: 6305340
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nuclear triiodothyronine receptors in the developing rat brain.
    Valcana T; Timiras PS
    Mol Cell Endocrinol; 1978 Jun; 11(1):31-41. PubMed ID: 210058
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The early ontogenesis of thyroid hormone receptor in the rat fetus.
    Perez-Castillo A; Bernal J; Ferreiro B; Pans T
    Endocrinology; 1985 Dec; 117(6):2457-61. PubMed ID: 2998737
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diabetes decreases liver and kidney nuclear 3,5,3'-triiodothyronine receptors in rats.
    Jolin T
    Endocrinology; 1987 May; 120(5):2144-51. PubMed ID: 3552632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.