These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 22130638)

  • 21. Protein phosphatase 1 regulates the histone code for long-term memory.
    Koshibu K; Gräff J; Beullens M; Heitz FD; Berchtold D; Russig H; Farinelli M; Bollen M; Mansuy IM
    J Neurosci; 2009 Oct; 29(41):13079-89. PubMed ID: 19828821
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Epigenetics and memory].
    Gräff J; Franklin TB; Mansuy IM
    Biol Aujourdhui; 2010; 204(2):131-7. PubMed ID: 20950557
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methylation, memory and addiction.
    Bali P; Im HI; Kenny PJ
    Epigenetics; 2011 Jun; 6(6):671-4. PubMed ID: 21586900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hippocampus development and function: role of epigenetic factors and implications for cognitive disease.
    Lagali PS; Corcoran CP; Picketts DJ
    Clin Genet; 2010 Oct; 78(4):321-33. PubMed ID: 20681996
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Histone Modifications of Neuronal Plasticity.
    Geng H; Chen H; Wang H; Wang L
    Neural Plast; 2021; 2021():6690523. PubMed ID: 33628222
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Memory acquisition and retrieval impact different epigenetic processes that regulate gene expression.
    Peixoto LL; Wimmer ME; Poplawski SG; Tudor JC; Kenworthy CA; Liu S; Mizuno K; Garcia BA; Zhang NR; Giese K; Abel T
    BMC Genomics; 2015; 16 Suppl 5(Suppl 5):S5. PubMed ID: 26040834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [On epigenetic regulation of process of formation of long-term memory].
    Shvetsov AV; Zachepilo TG; Vaĭdo AI; Kamyshev NG; Lopatina NG
    Zh Evol Biokhim Fiziol; 2013; 49(2):97-104. PubMed ID: 23789394
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redox Components: Key Regulators of Epigenetic Modifications in Plants.
    R M SK; Wang Y; Zhang X; Cheng H; Sun L; He S; Hao F
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32093110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Histone H1 poly[ADP]-ribosylation regulates the chromatin alterations required for learning consolidation.
    Fontán-Lozano A; Suárez-Pereira I; Horrillo A; del-Pozo-Martín Y; Hmadcha A; Carrión AM
    J Neurosci; 2010 Oct; 30(40):13305-13. PubMed ID: 20926656
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Epigenetic regulation of neural gene expression and neuronal function.
    Feng J; Fouse S; Fan G
    Pediatr Res; 2007 May; 61(5 Pt 2):58R-63R. PubMed ID: 17413844
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Late-Life Environmental Enrichment Induces Acetylation Events and Nuclear Factor κB-Dependent Regulations in the Hippocampus of Aged Rats Showing Improved Plasticity and Learning.
    Neidl R; Schneider A; Bousiges O; Majchrzak M; Barbelivien A; de Vasconcelos AP; Dorgans K; Doussau F; Loeffler JP; Cassel JC; Boutillier AL
    J Neurosci; 2016 Apr; 36(15):4351-61. PubMed ID: 27076430
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Epigenetic interplay between histone modifications and DNA methylation in gene silencing.
    Vaissière T; Sawan C; Herceg Z
    Mutat Res; 2008; 659(1-2):40-8. PubMed ID: 18407786
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adult hippocampal MeCP2 preserves the genomic responsiveness to learning required for long-term memory formation.
    Gulmez Karaca K; Brito DVC; Zeuch B; Oliveira AMM
    Neurobiol Learn Mem; 2018 Mar; 149():84-97. PubMed ID: 29438740
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chromatin remodeling in neural development and plasticity.
    Hsieh J; Gage FH
    Curr Opin Cell Biol; 2005 Dec; 17(6):664-71. PubMed ID: 16226449
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Epigenetic modifications in neurons are essential for formation and storage of behavioral memory.
    Day JJ; Sweatt JD
    Neuropsychopharmacology; 2011 Jan; 36(1):357-8. PubMed ID: 21116250
    [No Abstract]   [Full Text] [Related]  

  • 36. Brain function and chromatin plasticity.
    Dulac C
    Nature; 2010 Jun; 465(7299):728-35. PubMed ID: 20535202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MAP Kinase-Dependent RUNX2 Phosphorylation Is Necessary for Epigenetic Modification of Chromatin During Osteoblast Differentiation.
    Li Y; Ge C; Franceschi RT
    J Cell Physiol; 2017 Sep; 232(9):2427-2435. PubMed ID: 27514023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shaping synaptic plasticity: the role of activity-mediated epigenetic regulation on gene transcription.
    Cortés-Mendoza J; Díaz de León-Guerrero S; Pedraza-Alva G; Pérez-Martínez L
    Int J Dev Neurosci; 2013 Oct; 31(6):359-69. PubMed ID: 23665156
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of chromatin repressive marks in cognition and disease: A focus on the repressive complex GLP/G9a.
    Benevento M; van de Molengraft M; van Westen R; van Bokhoven H; Kasri NN
    Neurobiol Learn Mem; 2015 Oct; 124():88-96. PubMed ID: 26143996
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Joining the dots: from chromatin remodeling to neuronal plasticity.
    Zocchi L; Sassone-Corsi P
    Curr Opin Neurobiol; 2010 Aug; 20(4):432-40. PubMed ID: 20471240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.