BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 22130669)

  • 1. Identification of potential tumor differentiation factor (TDF) receptor from steroid-responsive and steroid-resistant breast cancer cells.
    Sokolowska I; Woods AG; Gawinowicz MA; Roy U; Darie CC
    J Biol Chem; 2012 Jan; 287(3):1719-33. PubMed ID: 22130669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a potential tumor differentiation factor receptor candidate in prostate cancer cells.
    Sokolowska I; Woods AG; Gawinowicz MA; Roy U; Darie CC
    FEBS J; 2012 Jul; 279(14):2579-94. PubMed ID: 22613557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating a novel protein using mass spectrometry: the example of tumor differentiation factor (TDF).
    Woods AG; Sokolowska I; Deinhardt K; Darie CC
    Adv Exp Med Biol; 2014; 806():509-23. PubMed ID: 24952200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of tumor differentiation factor (TDF) and its receptor (TDF-R).
    Sokolowska I; Woods AG; Gawinowicz MA; Roy U; Darie CC
    Cell Mol Life Sci; 2013 Aug; 70(16):2835-48. PubMed ID: 23076253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Mass Spectrometry in Investigating a Novel Protein: The Example of Tumor Differentiation Factor (TDF).
    Sokolowska I; Ngounou Wetie AG; Woods AG; Jayathirtha M; Darie CC
    Adv Exp Med Biol; 2019; 1140():417-433. PubMed ID: 31347062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pituitary gene encodes a protein that produces differentiation of breast and prostate cancer cells.
    Platica M; Ivan E; Holland JF; Ionescu A; Chen S; Mandeli J; Unger PD; Platica O
    Proc Natl Acad Sci U S A; 2004 Feb; 101(6):1560-5. PubMed ID: 14745005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HSP27 and HSP70 interact with CD10 in C4-2 prostate cancer cells.
    Dall'Era MA; Oudes A; Martin DB; Liu AY
    Prostate; 2007 May; 67(7):714-21. PubMed ID: 17342744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat shock proteins and cell proliferation in human breast cancer biopsy samples.
    Vargas-Roig LM; Fanelli MA; López LA; Gago FE; Tello O; Aznar JC; Ciocca DR
    Cancer Detect Prev; 1997; 21(5):441-51. PubMed ID: 9307847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 17beta-hydroxysteroid dehydrogenase type 5 is negatively correlated to apoptosis inhibitor GRP78 and tumor-secreted protein PGK1, and modulates breast cancer cell viability and proliferation.
    Xu D; Aka JA; Wang R; Lin SX
    J Steroid Biochem Mol Biol; 2017 Jul; 171():270-280. PubMed ID: 28457968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural investigation of tumor differentiation factor.
    Roy U; Sokolowska I; Woods AG; Darie CC
    Biotechnol Appl Biochem; 2012; 59(6):445-50. PubMed ID: 23586953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat shock proteins hsp27 and hsp70: lack of correlation with response to tamoxifen and clinical course of disease in estrogen receptor-positive metastatic breast cancer (a Southwest Oncology Group Study).
    Ciocca DR; Green S; Elledge RM; Clark GM; Pugh R; Ravdin P; Lew D; Martino S; Osborne CK
    Clin Cancer Res; 1998 May; 4(5):1263-6. PubMed ID: 9607585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The COOH-Terminal Proline-Rich Region of GRP78 Is a Key Regulator of Its Cell Surface Expression and Viability of Tamoxifen-Resistant Breast Cancer Cells.
    Tseng CC; Zhang P; Lee AS
    Neoplasia; 2019 Aug; 21(8):837-848. PubMed ID: 31306849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic profiling of hepatocellular carcinoma in Chinese cohort reveals heat-shock proteins (Hsp27, Hsp70, GRP78) up-regulation and their associated prognostic values.
    Luk JM; Lam CT; Siu AF; Lam BY; Ng IO; Hu MY; Che CM; Fan ST
    Proteomics; 2006 Feb; 6(3):1049-57. PubMed ID: 16400691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic promotion of breast cancer cells death by targeting molecular chaperone GRP78 and heat shock protein 70.
    Li M; Wang J; Jing J; Hua H; Luo T; Xu L; Wang R; Liu D; Jiang Y
    J Cell Mol Med; 2009; 13(11-12):4540-50. PubMed ID: 19017364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of murine BiP/GRP78 with the DnaJ homologue MTJ1.
    Chevalier M; Rhee H; Elguindi EC; Blond SY
    J Biol Chem; 2000 Jun; 275(26):19620-7. PubMed ID: 10777498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulatory effects of curcumin on heat shock proteins in cancer: A promising therapeutic approach.
    Forouzanfar F; Barreto G; Majeed M; Sahebkar A
    Biofactors; 2019 Sep; 45(5):631-640. PubMed ID: 31136038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phage display biopanning identifies the translation initiation and elongation factors (IF1α-3 and eIF-3) as components of Hsp70-peptide complexes in breast tumour cells.
    Siebke C; James TC; Cummins R; O'Grady T; Kay E; Bond U
    Cell Stress Chaperones; 2012 Mar; 17(2):145-56. PubMed ID: 22002548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of unliganded steroid receptors activates endogenous heat shock factor.
    Xiao N; DeFranco DB
    Mol Endocrinol; 1997 Aug; 11(9):1365-74. PubMed ID: 9259326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maximal eccentric exercise induces a rapid accumulation of small heat shock proteins on myofibrils and a delayed HSP70 response in humans.
    Paulsen G; Vissing K; Kalhovde JM; Ugelstad I; Bayer ML; Kadi F; Schjerling P; Hallén J; Raastad T
    Am J Physiol Regul Integr Comp Physiol; 2007 Aug; 293(2):R844-53. PubMed ID: 17522120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions.
    Fernandez PM; Tabbara SO; Jacobs LK; Manning FC; Tsangaris TN; Schwartz AM; Kennedy KA; Patierno SR
    Breast Cancer Res Treat; 2000 Jan; 59(1):15-26. PubMed ID: 10752676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.