These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 22130839)

  • 1. Analysis of skeletal muscle hypertrophy in models of increased loading.
    Bodine SC; Baar K
    Methods Mol Biol; 2012; 798():213-29. PubMed ID: 22130839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled lengthening or shortening contraction-induced damage is followed by fiber hypertrophy in rat skeletal muscle.
    Komulainen J; Kalliokoski R; Koskinen SO; Drost MR; Kuipers H; Hesselink MK
    Int J Sports Med; 2000 Feb; 21(2):107-12. PubMed ID: 10727070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of whey isolate, creatine, and resistance training on muscle hypertrophy.
    Cribb PJ; Williams AD; Stathis CG; Carey MF; Hayes A
    Med Sci Sports Exerc; 2007 Feb; 39(2):298-307. PubMed ID: 17277594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle function and hypertrophy are diminished in old age.
    Degens H; Alway SE
    Muscle Nerve; 2003 Mar; 27(3):339-47. PubMed ID: 12635121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Serhl, a new member of the serine hydrolase family induced by passive stretch of skeletal muscle in vivo.
    Sadusky TJ; Kemp TJ; Simon M; Carey N; Coulton GR
    Genomics; 2001 Apr; 73(1):38-49. PubMed ID: 11352564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AT1 receptors are necessary for eccentric training-induced hypertrophy and strength gains in rat skeletal muscle.
    McBride TA
    Exp Physiol; 2006 Mar; 91(2):413-21. PubMed ID: 16317083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human exercise-mediated skeletal muscle hypertrophy is an intrinsic process.
    West DW; Burd NA; Staples AW; Phillips SM
    Int J Biochem Cell Biol; 2010 Sep; 42(9):1371-5. PubMed ID: 20541030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atrophy and hypertrophy of skeletal muscles: structural and functional aspects.
    Boonyarom O; Inui K
    Acta Physiol (Oxf); 2006 Oct; 188(2):77-89. PubMed ID: 16948795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resistance loading and signaling assays for oxidative stress in rodent skeletal muscle.
    Alway SE; Cutlip RG
    Methods Mol Biol; 2012; 798():185-211. PubMed ID: 22130838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leukemia inhibitory factor restores the hypertrophic response to increased loading in the LIF(-/-) mouse.
    Spangenburg EE; Booth FW
    Cytokine; 2006 May; 34(3-4):125-30. PubMed ID: 16781162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SB431542 treatment promotes the hypertrophy of skeletal muscle fibers but decreases specific force.
    Watt KI; Jaspers RT; Atherton P; Smith K; Rennie MJ; Ratkevicius A; Wackerhage H
    Muscle Nerve; 2010 May; 41(5):624-9. PubMed ID: 20151464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat shock protein accumulation and heat shock transcription factor activation in rat skeletal muscle during compensatory hypertrophy.
    Locke M
    Acta Physiol (Oxf); 2008 Mar; 192(3):403-11. PubMed ID: 17973955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myostatin expression during human muscle hypertrophy and subsequent atrophy: increased myostatin with detraining.
    Jespersen JG; Nedergaard A; Andersen LL; Schjerling P; Andersen JL
    Scand J Med Sci Sports; 2011 Apr; 21(2):215-23. PubMed ID: 19903317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle following tonic overload: functional and structural analysis.
    Johnson TL; Klueber KM
    Med Sci Sports Exerc; 1991 Jan; 23(1):49-55. PubMed ID: 1997813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free radicals generated by contracting muscle: by-products of metabolism or key regulators of muscle function?
    Jackson MJ
    Free Radic Biol Med; 2008 Jan; 44(2):132-41. PubMed ID: 18191749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass-dependent decline of skeletal muscle function in cancer cachexia.
    Gorselink M; Vaessen SF; van der Flier LG; Leenders I; Kegler D; Caldenhoven E; van der Beek E; van Helvoort A
    Muscle Nerve; 2006 May; 33(5):691-3. PubMed ID: 16372346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow-tonic muscle fibers and their potential innervation in the turtle, Pseudemys (Trachemys) scripta elegans.
    Callister RJ; Pierce PA; McDonagh JC; Stuart DG
    J Morphol; 2005 Apr; 264(1):62-74. PubMed ID: 15732049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanotransduction and the regulation of protein synthesis in skeletal muscle.
    Hornberger TA; Esser KA
    Proc Nutr Soc; 2004 May; 63(2):331-5. PubMed ID: 15294051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential gene expression in the rat soleus muscle during early work overload-induced hypertrophy.
    Carson JA; Nettleton D; Reecy JM
    FASEB J; 2002 Feb; 16(2):207-9. PubMed ID: 11744623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local nitric oxide synthase inhibition reduces skeletal muscle glucose uptake but not capillary blood flow during in situ muscle contraction in rats.
    Ross RM; Wadley GD; Clark MG; Rattigan S; McConell GK
    Diabetes; 2007 Dec; 56(12):2885-92. PubMed ID: 17881613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.