BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22130850)

  • 1. Detection of calcium sparks in intact and permeabilized skeletal muscle fibers.
    Weisleder N; Zhou J; Ma J
    Methods Mol Biol; 2012; 798():395-410. PubMed ID: 22130850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of calcium sparks in intact skeletal muscle fibers.
    Park KH; Weisleder N; Zhou J; Gumpper K; Zhou X; Duann P; Ma J; Lin PH
    J Vis Exp; 2014 Feb; (84):e50898. PubMed ID: 24638093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca2+ sparks as a plastic signal for skeletal muscle health, aging, and dystrophy.
    Weisleder N; Ma JJ
    Acta Pharmacol Sin; 2006 Jul; 27(7):791-8. PubMed ID: 16787561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial redox state and Ca2+ sparks in permeabilized mammalian skeletal muscle.
    Isaeva EV; Shkryl VM; Shirokova N
    J Physiol; 2005 Jun; 565(Pt 3):855-72. PubMed ID: 15845582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Type 1 inositol (1,4,5)-trisphosphate receptor activates ryanodine receptor 1 to mediate calcium spark signaling in adult mammalian skeletal muscle.
    Tjondrokoesoemo A; Li N; Lin PH; Pan Z; Ferrante CJ; Shirokova N; Brotto M; Weisleder N; Ma J
    J Biol Chem; 2013 Jan; 288(4):2103-9. PubMed ID: 23223241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca(2+) sparks operated by membrane depolarization require isoform 3 ryanodine receptor channels in skeletal muscle.
    Pouvreau S; Royer L; Yi J; Brum G; Meissner G; Ríos E; Zhou J
    Proc Natl Acad Sci U S A; 2007 Mar; 104(12):5235-40. PubMed ID: 17360329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The changes in Ca2+ sparks associated with measured modifications of intra-store Ca2+ concentration in skeletal muscle.
    Launikonis BS; Zhou J; Santiago D; Brum G; Ríos E
    J Gen Physiol; 2006 Jul; 128(1):45-54. PubMed ID: 16769796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive oxygen species contribute to Ca2+ signals produced by osmotic stress in mouse skeletal muscle fibres.
    Martins AS; Shkryl VM; Nowycky MC; Shirokova N
    J Physiol; 2008 Jan; 586(1):197-210. PubMed ID: 17974587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of tetracaine on voltage-activated calcium sparks in frog intact skeletal muscle fibers.
    Hollingworth S; Chandler WK; Baylor SM
    J Gen Physiol; 2006 Mar; 127(3):291-307. PubMed ID: 16505149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systemic ablation of RyR3 alters Ca2+ spark signaling in adult skeletal muscle.
    Weisleder N; Ferrante C; Hirata Y; Collet C; Chu Y; Cheng H; Takeshima H; Ma J
    Cell Calcium; 2007 Dec; 42(6):548-55. PubMed ID: 17412417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca2+ entry-independent effects of L-type Ca2+ channel modulators on Ca2+ sparks in ventricular myocytes.
    Copello JA; Zima AV; Diaz-Sylvester PL; Fill M; Blatter LA
    Am J Physiol Cell Physiol; 2007 Jun; 292(6):C2129-40. PubMed ID: 17314267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium Homeostasis Is Modified in Skeletal Muscle Fibers of Small Ankyrin1 Knockout Mice.
    Pierantozzi E; Szentesi P; Al-Gaadi D; Oláh T; Dienes B; Sztretye M; Rossi D; Sorrentino V; Csernoch L
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31323924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of osmotic stress induced Ca2+ spark termination in mammalian skeletal muscle.
    Ferrante C; Szappanos H; Csernoch L; Weisleder N
    Indian J Biochem Biophys; 2013 Oct; 50(5):411-8. PubMed ID: 24772962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory control over Ca(2+) sparks via mechanosensitive channels is disrupted in dystrophin deficient muscle but restored by mini-dystrophin expression.
    Teichmann MD; Wegner FV; Fink RH; Chamberlain JS; Launikonis BS; Martinac B; Friedrich O
    PLoS One; 2008; 3(11):e3644. PubMed ID: 18982068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of ryanodine receptor type 3 to Ca(2+) sparks in embryonic mouse skeletal muscle.
    Conklin MW; Barone V; Sorrentino V; Coronado R
    Biophys J; 1999 Sep; 77(3):1394-403. PubMed ID: 10465751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regional differences in spontaneous Ca2+ spark activity and regulation in cat atrial myocytes.
    Sheehan KA; Zima AV; Blatter LA
    J Physiol; 2006 May; 572(Pt 3):799-809. PubMed ID: 16484302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CaMKIIδC slows [Ca]i decline in cardiac myocytes by promoting Ca sparks.
    Guo T; Zhang T; Ginsburg KS; Mishra S; Brown JH; Bers DM
    Biophys J; 2012 Jun; 102(11):2461-70. PubMed ID: 22713561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A probable role of dihydropyridine receptors in repression of Ca2+ sparks demonstrated in cultured mammalian muscle.
    Zhou J; Yi J; Royer L; Launikonis BS; González A; García J; Ríos E
    Am J Physiol Cell Physiol; 2006 Feb; 290(2):C539-53. PubMed ID: 16148029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interdomain interactions within ryanodine receptors regulate Ca2+ spark frequency in skeletal muscle.
    Shtifman A; Ward CW; Yamamoto T; Wang J; Olbinski B; Valdivia HH; Ikemoto N; Schneider MF
    J Gen Physiol; 2002 Jan; 119(1):15-32. PubMed ID: 11773235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initiation and termination of calcium sparks in skeletal muscle.
    Schneider MF; Ward CW
    Front Biosci; 2002 May; 7():d1212-22. PubMed ID: 11991854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.