These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
51 related articles for article (PubMed ID: 22130884)
1. Effective non-linear methods for inferring genetic regulation from time-series microarray gene expression data. Wang J; Tian T Methods Mol Biol; 2012; 802():235-46. PubMed ID: 22130884 [TBL] [Abstract][Full Text] [Related]
2. Generation of p53 target database via integration of microarray and global p53 DNA-binding site analysis. Liu S; Mirza A; Wang L Methods Mol Biol; 2004; 281():33-54. PubMed ID: 15220520 [TBL] [Abstract][Full Text] [Related]
3. Quantitative model for inferring dynamic regulation of the tumour suppressor gene p53. Wang J; Tian T BMC Bioinformatics; 2010 Jan; 11():36. PubMed ID: 20085646 [TBL] [Abstract][Full Text] [Related]
4. Global transcriptional program of p53 target genes during the process of apoptosis and cell cycle progression. Mirza A; Wu Q; Wang L; McClanahan T; Bishop WR; Gheyas F; Ding W; Hutchins B; Hockenberry T; Kirschmeier P; Greene JR; Liu S Oncogene; 2003 Jun; 22(23):3645-54. PubMed ID: 12789273 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data. Kim SY; Kim Y BMC Bioinformatics; 2006 Jul; 7():330. PubMed ID: 16817975 [TBL] [Abstract][Full Text] [Related]
6. Inferring gene regulatory relationships by combining target-target pattern recognition and regulator-specific motif examination. Wei H; Kaznessis Y Biotechnol Bioeng; 2005 Jan; 89(1):53-77. PubMed ID: 15540196 [TBL] [Abstract][Full Text] [Related]
7. A hidden Markov model for analyzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences. Li W; Meyer CA; Liu XS Bioinformatics; 2005 Jun; 21 Suppl 1():i274-82. PubMed ID: 15961467 [TBL] [Abstract][Full Text] [Related]
8. Boolean dynamics of genetic regulatory networks inferred from microarray time series data. Martin S; Zhang Z; Martino A; Faulon JL Bioinformatics; 2007 Apr; 23(7):866-74. PubMed ID: 17267426 [TBL] [Abstract][Full Text] [Related]
9. Stochastic models for inferring genetic regulation from microarray gene expression data. Tian T Biosystems; 2010 Mar; 99(3):192-200. PubMed ID: 19945503 [TBL] [Abstract][Full Text] [Related]
10. Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method. Fujita A; Sato JR; Garay-Malpartida HM; Morettin PA; Sogayar MC; Ferreira CE Bioinformatics; 2007 Jul; 23(13):1623-30. PubMed ID: 17463021 [TBL] [Abstract][Full Text] [Related]
11. A global map of p53 transcription-factor binding sites in the human genome. Wei CL; Wu Q; Vega VB; Chiu KP; Ng P; Zhang T; Shahab A; Yong HC; Fu Y; Weng Z; Liu J; Zhao XD; Chew JL; Lee YL; Kuznetsov VA; Sung WK; Miller LD; Lim B; Liu ET; Yu Q; Ng HH; Ruan Y Cell; 2006 Jan; 124(1):207-19. PubMed ID: 16413492 [TBL] [Abstract][Full Text] [Related]
12. Inferring gene regulatory networks from multiple microarray datasets. Wang Y; Joshi T; Zhang XS; Xu D; Chen L Bioinformatics; 2006 Oct; 22(19):2413-20. PubMed ID: 16864593 [TBL] [Abstract][Full Text] [Related]
13. Inferring pairwise regulatory relationships from multiple time series datasets. Shi Y; Mitchell T; Bar-Joseph Z Bioinformatics; 2007 Mar; 23(6):755-63. PubMed ID: 17237067 [TBL] [Abstract][Full Text] [Related]
14. Integration of cap analysis of gene expression and chromatin immunoprecipitation analysis on array reveals genome-wide androgen receptor signaling in prostate cancer cells. Takayama K; Tsutsumi S; Katayama S; Okayama T; Horie-Inoue K; Ikeda K; Urano T; Kawazu C; Hasegawa A; Ikeo K; Gojyobori T; Ouchi Y; Hayashizaki Y; Aburatani H; Inoue S Oncogene; 2011 Feb; 30(5):619-30. PubMed ID: 20890304 [TBL] [Abstract][Full Text] [Related]
16. A novel meta-analysis approach of cancer transcriptomes reveals prevailing transcriptional networks in cancer cells. Niida A; Imoto S; Nagasaki M; Yamaguchi R; Miyano S Genome Inform; 2010 Jan; 22():121-31. PubMed ID: 20238423 [TBL] [Abstract][Full Text] [Related]
17. Improved protein-binding microarrays for the identification of DNA-binding specificities of transcription factors. Godoy M; Franco-Zorrilla JM; Pérez-Pérez J; Oliveros JC; Lorenzo O; Solano R Plant J; 2011 May; 66(4):700-11. PubMed ID: 21284757 [TBL] [Abstract][Full Text] [Related]
18. Using a state-space model with hidden variables to infer transcription factor activities. Li Z; Shaw SM; Yedwabnick MJ; Chan C Bioinformatics; 2006 Mar; 22(6):747-54. PubMed ID: 16403793 [TBL] [Abstract][Full Text] [Related]
19. Histone deacetylase 5 is not a p53 target gene, but its overexpression inhibits tumor cell growth and induces apoptosis. Huang Y; Tan M; Gosink M; Wang KK; Sun Y Cancer Res; 2002 May; 62(10):2913-22. PubMed ID: 12019172 [TBL] [Abstract][Full Text] [Related]
20. Impact of p53 knockout and topotecan treatment on gene expression profiles in human colon carcinoma cells: a pharmacogenomic study. Daoud SS; Munson PJ; Reinhold W; Young L; Prabhu VV; Yu Q; LaRose J; Kohn KW; Weinstein JN; Pommier Y Cancer Res; 2003 Jun; 63(11):2782-93. PubMed ID: 12782583 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]