These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 22130890)

  • 1. Using ChIPMotifs for de novo motif discovery of OCT4 and ZNF263 based on ChIP-based high-throughput experiments.
    Kennedy BA; Lan X; Huang TH; Farnham PJ; Jin VX
    Methods Mol Biol; 2012; 802():323-34. PubMed ID: 22130890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. W-ChIPMotifs: a web application tool for de novo motif discovery from ChIP-based high-throughput data.
    Jin VX; Apostolos J; Nagisetty NS; Farnham PJ
    Bioinformatics; 2009 Dec; 25(23):3191-3. PubMed ID: 19797408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of an OCT4 and SRY regulatory module using integrated computational and experimental genomics approaches.
    Jin VX; O'Geen H; Iyengar S; Green R; Farnham PJ
    Genome Res; 2007 Jun; 17(6):807-17. PubMed ID: 17567999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TrawlerWeb: an online de novo motif discovery tool for next-generation sequencing datasets.
    Dang LT; Tondl M; Chiu MHH; Revote J; Paten B; Tano V; Tokolyi A; Besse F; Quaife-Ryan G; Cumming H; Drvodelic MJ; Eichenlaub MP; Hallab JC; Stolper JS; Rossello FJ; Bogoyevitch MA; Jans DA; Nim HT; Porrello ER; Hudson JE; Ramialison M
    BMC Genomics; 2018 Apr; 19(1):238. PubMed ID: 29621972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MEME-ChIP: motif analysis of large DNA datasets.
    Machanick P; Bailey TL
    Bioinformatics; 2011 Jun; 27(12):1696-7. PubMed ID: 21486936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motif-based analysis of large nucleotide data sets using MEME-ChIP.
    Ma W; Noble WS; Bailey TL
    Nat Protoc; 2014; 9(6):1428-50. PubMed ID: 24853928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GAPWM: a genetic algorithm method for optimizing a position weight matrix.
    Li L; Liang Y; Bass RL
    Bioinformatics; 2007 May; 23(10):1188-94. PubMed ID: 17341493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. abc4pwm: affinity based clustering for position weight matrices in applications of DNA sequence analysis.
    Ali O; Farooq A; Yang M; Jin VX; Bjørås M; Wang J
    BMC Bioinformatics; 2022 Mar; 23(1):83. PubMed ID: 35240993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PscanChIP: Finding over-represented transcription factor-binding site motifs and their correlations in sequences from ChIP-Seq experiments.
    Zambelli F; Pesole G; Pavesi G
    Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W535-43. PubMed ID: 23748563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trawler: de novo regulatory motif discovery pipeline for chromatin immunoprecipitation.
    Ettwiller L; Paten B; Ramialison M; Birney E; Wittbrodt J
    Nat Methods; 2007 Jul; 4(7):563-5. PubMed ID: 17589518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of C2H2-ZF binding preferences from ChIP-seq data using RCADE.
    Najafabadi HS; Albu M; Hughes TR
    Bioinformatics; 2015 Sep; 31(17):2879-81. PubMed ID: 25953800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. STREME: accurate and versatile sequence motif discovery.
    Bailey TL
    Bioinformatics; 2021 Sep; 37(18):2834-2840. PubMed ID: 33760053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A general approach for discriminative de novo motif discovery from high-throughput data.
    Grau J; Posch S; Grosse I; Keilwagen J
    Nucleic Acids Res; 2013 Nov; 41(21):e197. PubMed ID: 24057214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Fast Cluster Motif Finding Algorithm for ChIP-Seq Data Sets.
    Zhang Y; Wang P
    Biomed Res Int; 2015; 2015():218068. PubMed ID: 26236718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of context-dependent motifs by contrasting ChIP binding data.
    Mason MJ; Plath K; Zhou Q
    Bioinformatics; 2010 Nov; 26(22):2826-32. PubMed ID: 20870645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A feature-based approach to modeling protein-DNA interactions.
    Sharon E; Lubliner S; Segal E
    PLoS Comput Biol; 2008 Aug; 4(8):e1000154. PubMed ID: 18725950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. W-AlignACE: an improved Gibbs sampling algorithm based on more accurate position weight matrices learned from sequence and gene expression/ChIP-chip data.
    Chen X; Guo L; Fan Z; Jiang T
    Bioinformatics; 2008 May; 24(9):1121-8. PubMed ID: 18325926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovering motifs in ranked lists of DNA sequences.
    Eden E; Lipson D; Yogev S; Yakhini Z
    PLoS Comput Biol; 2007 Mar; 3(3):e39. PubMed ID: 17381235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Methods for Analysis of the DNA-Binding Preferences of Cys2His2 Zinc-Finger Proteins.
    Doğan B; Najafabadi HS
    Methods Mol Biol; 2018; 1867():15-28. PubMed ID: 30155812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Monte Carlo-based framework enhances the discovery and interpretation of regulatory sequence motifs.
    Seitzer P; Wilbanks EG; Larsen DJ; Facciotti MT
    BMC Bioinformatics; 2012 Nov; 13():317. PubMed ID: 23181585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.