BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 22130891)

  • 1. Hidden Markov models for controlling false discovery rate in genome-wide association analysis.
    Wei Z
    Methods Mol Biol; 2012; 802():337-44. PubMed ID: 22130891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple testing in genome-wide association studies via hidden Markov models.
    Wei Z; Sun W; Wang K; Hakonarson H
    Bioinformatics; 2009 Nov; 25(21):2802-8. PubMed ID: 19654115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability selection for genome-wide association.
    Alexander DH; Lange K
    Genet Epidemiol; 2011 Nov; 35(7):722-8. PubMed ID: 22009793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hidden Markov random field model for genome-wide association studies.
    Li H; Wei Z; Maris J
    Biostatistics; 2010 Jan; 11(1):139-50. PubMed ID: 19822692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poor replication of candidate genes for major depressive disorder using genome-wide association data.
    Bosker FJ; Hartman CA; Nolte IM; Prins BP; Terpstra P; Posthuma D; van Veen T; Willemsen G; DeRijk RH; de Geus EJ; Hoogendijk WJ; Sullivan PF; Penninx BW; Boomsma DI; Snieder H; Nolen WA
    Mol Psychiatry; 2011 May; 16(5):516-32. PubMed ID: 20351714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bivariate association analysis for quantitative traits using generalized estimation equation.
    Yang F; Tang Z; Deng H
    J Genet Genomics; 2009 Dec; 36(12):733-43. PubMed ID: 20129400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. METU-SNP: an integrated software system for SNP-complex disease association analysis.
    Ustünkar G; Aydın Son Y
    J Integr Bioinform; 2011 Dec; 8(1):187. PubMed ID: 22156365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A powerful statistical framework for generalization testing in GWAS, with application to the HCHS/SOL.
    Sofer T; Heller R; Bogomolov M; Avery CL; Graff M; North KE; Reiner AP; Thornton TA; Rice K; Benjamini Y; Laurie CC; Kerr KF
    Genet Epidemiol; 2017 Apr; 41(3):251-258. PubMed ID: 28090672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Summarizing and quantifying multilocus linkage disequilibrium patterns with multi-order Markov chain models.
    Feng S; Wang S
    J Biopharm Stat; 2010 Mar; 20(2):441-53. PubMed ID: 20309767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new expectation-maximization statistical test for case-control association studies considering rare variants obtained by high-throughput sequencing.
    Gordon D; Finch SJ; De La Vega FM
    Hum Hered; 2011; 71(2):113-25. PubMed ID: 21734402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hidden Markov approach for ascertaining cSNP genotypes from RNA sequence data in the presence of allelic imbalance by exploiting linkage disequilibrium.
    Steibel JP; Wang H; Zhong PS
    BMC Bioinformatics; 2015 Feb; 16():61. PubMed ID: 25887316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impaired performance of FDR-based strategies in whole-genome association studies when SNPs are excluded prior to the analysis.
    Marenne G; Dalmasso C; Perdry H; Génin E; Broët P
    Genet Epidemiol; 2009 Jan; 33(1):45-53. PubMed ID: 18618761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sifting the wheat from the chaff: prioritizing GWAS results by identifying consistency across analytical methods.
    Oldmeadow C; Riveros C; Holliday EG; Scott R; Moscato P; Wang JJ; Mitchell P; Buitendijk GH; Vingerling JR; Klaver CC; Klein R; Attia J
    Genet Epidemiol; 2011 Dec; 35(8):745-54. PubMed ID: 22125219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Markov chain model for haplotype assembly from SNP fragments.
    Wang RS; Wu LY; Zhang XS; Chen L
    Genome Inform; 2006; 17(2):162-71. PubMed ID: 17503389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating rare variants under two-stage design.
    Li Q; Pan D; Yue W; Gao Y; Yu K
    J Hum Genet; 2012 Jun; 57(6):352-7. PubMed ID: 22572736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Family-based analysis of susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3.
    Zhao H; Xu X; Xing X; Wang J; He L; Shi Y; Shi Y; Zhao Y; Chen ZJ
    Hum Reprod; 2012 Jan; 27(1):294-8. PubMed ID: 22081247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of single nucleotide polymorphisms in case-control studies.
    Li Y; Shiffman D; Oberbauer R
    Methods Mol Biol; 2011; 719():219-34. PubMed ID: 21370086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Universal false discovery rate estimation methodology for genome-wide association studies.
    Forner K; Lamarine M; Guedj M; Dauvillier J; Wojcik J
    Hum Hered; 2008; 65(4):183-94. PubMed ID: 18073488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The power of genome-wide association studies of complex disease genes: statistical limitations of indirect approaches using SNP markers.
    Ohashi J; Tokunaga K
    J Hum Genet; 2001; 46(8):478-82. PubMed ID: 11501946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of association methods for dense marker data.
    Bacanu SA; Nelson MR; Ehm MG
    Genet Epidemiol; 2008 Dec; 32(8):791-9. PubMed ID: 18551558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.