BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 22130924)

  • 1. Isolation, differentiation, and characterisation of skeletal stem cells from human bone marrow in vitro and in vivo.
    Tare RS; Mitchell PD; Kanczler J; Oreffo RO
    Methods Mol Biol; 2012; 816():83-99. PubMed ID: 22130924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation, Differentiation, and Characterization of Human Bone Marrow Stem Cells In Vitro and In Vivo.
    Kanczler J; Tare RS; Stumpf P; Noble TJ; Black C; Oreffo ROC
    Methods Mol Biol; 2019; 1914():53-70. PubMed ID: 30729460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow.
    Tropel P; Noël D; Platet N; Legrand P; Benabid AL; Berger F
    Exp Cell Res; 2004 May; 295(2):395-406. PubMed ID: 15093739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection, enrichment, and culture expansion of murine mesenchymal progenitor cells by retroviral transduction of cycling adherent bone marrow cells.
    Kitano Y; Radu A; Shaaban A; Flake AW
    Exp Hematol; 2000 Dec; 28(12):1460-9. PubMed ID: 11146168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multilineage differentiation of adult human bone marrow progenitor cells transduced with human papilloma virus type 16 E6/E7 genes.
    Osyczka AM; Nöth U; O'Connor J; Caterson EJ; Yoon K; Danielson KG; Tuan RS
    Calcif Tissue Int; 2002 Nov; 71(5):447-58. PubMed ID: 12232673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basic fibroblast growth factor supports expansion of mouse compact bone-derived mesenchymal stem cells (MSCs) and regeneration of bone from MSC in vivo.
    Yamachika E; Tsujigiwa H; Matsubara M; Hirata Y; Kita K; Takabatake K; Mizukawa N; Kaneda Y; Nagatsuka H; Iida S
    J Mol Histol; 2012 Apr; 43(2):223-33. PubMed ID: 22203245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro.
    Kadiyala S; Young RG; Thiede MA; Bruder SP
    Cell Transplant; 1997; 6(2):125-34. PubMed ID: 9142444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interconversion potential of cloned human marrow adipocytes in vitro.
    Park SR; Oreffo RO; Triffitt JT
    Bone; 1999 Jun; 24(6):549-54. PubMed ID: 10375196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular isolation, culture and characterization of the marrow sac cells in human tubular bone.
    Bi LX; Mainous EG; Yngve DA; Buford WL
    J Musculoskelet Neuronal Interact; 2008; 8(1):43-9. PubMed ID: 18398264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue.
    Rebelatto CK; Aguiar AM; Moretão MP; Senegaglia AC; Hansen P; Barchiki F; Oliveira J; Martins J; Kuligovski C; Mansur F; Christofis A; Amaral VF; Brofman PS; Goldenberg S; Nakao LS; Correa A
    Exp Biol Med (Maywood); 2008 Jul; 233(7):901-13. PubMed ID: 18445775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C-KIT Expression Distinguishes Fetal from Postnatal Skeletal Progenitors.
    He DD; Tang XT; Dong W; Cui G; Peng G; Yin X; Chen Y; Jing N; Zhou BO
    Stem Cell Reports; 2020 Apr; 14(4):614-630. PubMed ID: 32220331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. miR-124 negatively regulates osteogenic differentiation and in vivo bone formation of mesenchymal stem cells.
    Qadir AS; Um S; Lee H; Baek K; Seo BM; Lee G; Kim GS; Woo KM; Ryoo HM; Baek JH
    J Cell Biochem; 2015 May; 116(5):730-42. PubMed ID: 25424317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteogenic potential of rat mesenchymal stem cells after several passages.
    Sugiura F; Kitoh H; Ishiguro N
    Biochem Biophys Res Commun; 2004 Mar; 316(1):233-9. PubMed ID: 15003535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relation between in vitro and in vivo osteogenic potential of cultured human bone marrow stromal cells.
    Mendes SC; Tibbe JM; Veenhof M; Both S; Oner FC; van Blitterswijk CA; de Bruijn JD
    J Mater Sci Mater Med; 2004 Oct; 15(10):1123-8. PubMed ID: 15516873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell surface expression of stem cell antigen-1 (Sca-1) distinguishes osteo-, chondro-, and adipoprogenitors in fetal mouse calvaria.
    Steenhuis P; Pettway GJ; Ignelzi MA
    Calcif Tissue Int; 2008 Jan; 82(1):44-56. PubMed ID: 18175035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone marrow aspiration concentrate and platelet rich plasma for osteochondral repair in a porcine osteochondral defect model.
    Betsch M; Schneppendahl J; Thuns S; Herten M; Sager M; Jungbluth P; Hakimi M; Wild M
    PLoS One; 2013; 8(8):e71602. PubMed ID: 23951201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adipose-derived stem cell: a better stem cell than BMSC.
    Zhu Y; Liu T; Song K; Fan X; Ma X; Cui Z
    Cell Biochem Funct; 2008 Aug; 26(6):664-75. PubMed ID: 18636461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apelin enhances the osteogenic differentiation of human bone marrow mesenchymal stem cells partly through Wnt/β-catenin signaling pathway.
    Hang K; Ye C; Xu J; Chen E; Wang C; Zhang W; Ni L; Kuang Z; Ying L; Xue D; Pan Z
    Stem Cell Res Ther; 2019 Jun; 10(1):189. PubMed ID: 31238979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and Characterization of Multipotent Mesenchymal Stem Cells Adhering to Adipocytes in Canine Bone Marrow.
    Lin HY; Fujita N; Endo K; Morita M; Takeda T; Nakagawa T; Nishimura R
    Stem Cells Dev; 2017 Mar; 26(6):431-440. PubMed ID: 27937753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of wnt/β-catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes.
    Song L; Liu M; Ono N; Bringhurst FR; Kronenberg HM; Guo J
    J Bone Miner Res; 2012 Nov; 27(11):2344-58. PubMed ID: 22729939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.