These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22130993)

  • 21. Assembly-controlled biocompatible interface on a microchip: strategy to highly efficient proteolysis.
    Liu Y; Zhong W; Meng S; Kong J; Lu H; Yang P; Girault HH; Liu B
    Chemistry; 2006 Aug; 12(25):6585-91. PubMed ID: 16800018
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recombinant immobilized rhizopuspepsin as a new tool for protein digestion in hydrogen/deuterium exchange mass spectrometry.
    Rey M; Man P; Brandolin G; Forest E; Pelosi L
    Rapid Commun Mass Spectrom; 2009 Nov; 23(21):3431-8. PubMed ID: 19827048
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Organic-inorganic hybrid silica monolith based immobilized trypsin reactor with high enzymatic activity.
    Ma J; Liang Z; Qiao X; Deng Q; Tao D; Zhang L; Zhang Y
    Anal Chem; 2008 Apr; 80(8):2949-56. PubMed ID: 18333626
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A bifunctional monolithic column for combined protein preconcentration and digestion for high throughput proteomics research.
    Zhang K; Wu S; Tang X; Kaiser NK; Bruce JE
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):223-30. PubMed ID: 17150420
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlled proteolysis of normal and pathological prion protein in a microfluidic chip.
    Le Nel A; Minc N; Smadja C; Slovakova M; Bilkova Z; Peyrin JM; Viovy JL; Taverna M
    Lab Chip; 2008 Feb; 8(2):294-301. PubMed ID: 18231669
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient on-chip proteolysis system based on functionalized magnetic silica microspheres.
    Li Y; Yan B; Deng C; Yu W; Xu X; Yang P; Zhang X
    Proteomics; 2007 Jul; 7(14):2330-9. PubMed ID: 17570518
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrated microfluidic chip for on-line proteome analysis with combination of denaturing and rapid digestion of protein.
    Wei Z; Fan P; Jiao Y; Wang Y; Huang Y; Liu Z
    Anal Chim Acta; 2020 Mar; 1102():1-10. PubMed ID: 32043988
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microchip bioreactors based on trypsin-immobilized graphene oxide-poly(urea-formaldehyde) composite coating for efficient peptide mapping.
    Fan H; Yao F; Xu S; Chen G
    Talanta; 2013 Dec; 117():119-26. PubMed ID: 24209319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-assembly synthes is of trypsin-immobilized monolithic microreactor for fast and efficient proteolysis.
    Zhong C; Yang B; Huang W; Huang H; Zhang S; Yan X; Lu Q; Chen Z; Lin Z
    J Chromatogr A; 2021 Jan; 1635():461742. PubMed ID: 33254000
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of a polystyrene microfluidic chip coupled to electrospray ionization mass spectrometry for protein analysis.
    Hu X; Dong Y; He Q; Chen H; Zhu Z
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 May; 990():96-103. PubMed ID: 25864010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polydopamine-assisted immobilization of trypsin onto monolithic structures for protein digestion.
    Rivera JG; Messersmith PB
    J Sep Sci; 2012 Jun; 35(12):1514-20. PubMed ID: 22740262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation and characterization of a packed bead immobilized trypsin reactor integrated into a PDMS microfluidic chip for rapid protein digestion.
    Kecskemeti A; Gaspar A
    Talanta; 2017 May; 166():275-283. PubMed ID: 28213235
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrophilic monolith based immobilized enzyme reactors in capillary and on microchip for high-throughput proteomic analysis.
    Liang Y; Tao D; Ma J; Sun L; Liang Z; Zhang L; Zhang Y
    J Chromatogr A; 2011 May; 1218(20):2898-905. PubMed ID: 21450299
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immobilization of thermophilic enzymes in miniaturized flow reactors.
    Hickey AM; Marle L; McCreedy T; Watts P; Greenway GM; Littlechild JA
    Biochem Soc Trans; 2007 Dec; 35(Pt 6):1621-3. PubMed ID: 18031278
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Disparities between immobilized enzyme and solution based digestion of transferrin with trypsin.
    Rivera-Burgos D; Regnier FE
    J Sep Sci; 2013 Feb; 36(3):454-60. PubMed ID: 23281316
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Native protein proteolysis in an immobilized enzyme reactor as a function of temperature.
    Rivera-Burgos D; Regnier FE
    Anal Chem; 2012 Aug; 84(16):7021-8. PubMed ID: 22845770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immobilization of trypsin in the layer-by-layer coating of graphene oxide and chitosan on in-channel glass fiber for microfluidic proteolysis.
    Bao H; Chen Q; Zhang L; Chen G
    Analyst; 2011 Dec; 136(24):5190-6. PubMed ID: 22013584
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of a temperature-controllable microreactor to simple and rapid protein identification using MALDI-TOF MS.
    Sim TS; Kim EM; Joo HS; Kim BG; Kim YK
    Lab Chip; 2006 Aug; 6(8):1056-61. PubMed ID: 16874378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of glutaraldehyde-crosslinked chymotrypsin and an in situ immobilized enzyme microreactor with peptide mapping by capillary electrophoresis.
    Ghafourifar G; Fleitz A; Waldron KC
    Electrophoresis; 2013 Jun; 34(12):1804-11. PubMed ID: 23686566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microchannel enzyme reactors and their applications for processing.
    Miyazaki M; Maeda H
    Trends Biotechnol; 2006 Oct; 24(10):463-70. PubMed ID: 16934892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.