These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22131287)

  • 1. On the use of big-bang method to generate low-energy structures of atomic clusters modeled with pair potentials of different ranges.
    Marques JM; Pais AA; Abreu PE
    J Comput Chem; 2012 Feb; 33(4):442-52. PubMed ID: 22131287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Putative global minimum structures of Morse clusters as a function of the range of the potential: 161 < or = N < or = 240.
    Feng Y; Cheng L; Liu H
    J Phys Chem A; 2009 Dec; 113(49):13651-5. PubMed ID: 19908881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global minimum structures and structural phase diagrams of modified Morse clusters: 11 ≤ N ≤ 30.
    Wu J; Cheng L
    J Chem Phys; 2011 May; 134(19):194108. PubMed ID: 21599045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global minimum structures of morse clusters as a function of the range of the potential: 81Cheng L; Yang J
    J Phys Chem A; 2007 Jun; 111(24):5287-93. PubMed ID: 17521176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A detailed investigation on the global minimum structures of mixed rare-gas clusters: geometry, energetics, and site occupancy.
    Marques JM; Pereira FB
    J Comput Chem; 2013 Mar; 34(6):505-17. PubMed ID: 23108580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth Pattern of Large Morse Clusters with Medium-Range Potentials.
    Chen L; Liang T; Wang L
    J Phys Chem Lett; 2022 Oct; 13(42):9801-9808. PubMed ID: 36227940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modified Morse potential for unification of the pair interactions.
    Cheng L; Yang J
    J Chem Phys; 2007 Sep; 127(12):124104. PubMed ID: 17902890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the use of different potential energy functions in rare-gas cluster optimization by genetic algorithms: application to argon clusters.
    Marques JM; Pereira FB; Leitão T
    J Phys Chem A; 2008 Jul; 112(27):6079-89. PubMed ID: 18547035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometry optimization of atomic clusters using a heuristic method with dynamic lattice searching.
    Lai X; Huang W; Xu R
    J Phys Chem A; 2011 May; 115(20):5021-6. PubMed ID: 21526817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ground-state clusters for short-range attractive and long-range repulsive potentials.
    Mossa S; Sciortino F; Tartaglia P; Zaccarelli E
    Langmuir; 2004 Nov; 20(24):10756-63. PubMed ID: 15544413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A theoretical investigation on optimal structures of ethane clusters (C2H6)n with n ≤ 25 and their building-up principle.
    Takeuchi H
    J Comput Chem; 2011 May; 32(7):1345-52. PubMed ID: 21425290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Funnel hopping: Searching the cluster potential energy surface over the funnels.
    Cheng L; Feng Y; Yang J; Yang J
    J Chem Phys; 2009 Jun; 130(21):214112. PubMed ID: 19508061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel lattice-searching method for modeling the optimal strain-free close-packed isomers of clusters.
    Cheng L; Yang J
    J Phys Chem A; 2007 Mar; 111(12):2336-42. PubMed ID: 17388327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo temperature basin paving with effective fragment potential: an efficient and fast method for finding low-energy structures of water clusters (H2O)20 and (H2O)25.
    Shanker S; Bandyopadhyay P
    J Phys Chem A; 2011 Oct; 115(42):11866-75. PubMed ID: 21928813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of different potentials on the structures and energies of clusters.
    Ma Z; Cai W; Shao X
    J Comput Chem; 2011 Nov; 32(14):3075-80. PubMed ID: 21793011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global optimization study of small (10 < or = N < or = 120) Pd clusters supported on MgO(100).
    Rossi G; Mottet C; Nita F; Ferrando R
    J Phys Chem B; 2006 Apr; 110(14):7436-42. PubMed ID: 16599522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A conformational analysis method for understanding the energy landscapes of clusters.
    Cheng L; Cai W; Shao X
    Chemphyschem; 2007 Mar; 8(4):569-77. PubMed ID: 17285660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global minimum geometries of acetylene clusters (HCCH)n with n < or = 55 obtained by a heuristic method combined with geometrical perturbations.
    Takeuchi H
    J Comput Chem; 2010 Jun; 31(8):1699-706. PubMed ID: 20127745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an efficient geometry optimization method for water clusters.
    Takeuchi H
    J Chem Inf Model; 2008 Nov; 48(11):2226-33. PubMed ID: 18975879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropy effect on global minimum structures of clusters: two-center Lennard-Jones model.
    Feng Y; Wu J; Cheng L; Liu H
    J Chem Phys; 2011 Dec; 135(24):244108. PubMed ID: 22225145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.