These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 22131301)

  • 1. Blood glucose level neural model for type 1 diabetes mellitus patients.
    Alanis AY; Leon BS; Sanchez EN; Ruiz-Velazquez E
    Int J Neural Syst; 2011 Dec; 21(6):491-504. PubMed ID: 22131301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An insulin infusion advisory system based on autotuning nonlinear model-predictive control.
    Zarkogianni K; Vazeou A; Mougiakakou SG; Prountzou A; Nikita KS
    IEEE Trans Biomed Eng; 2011 Sep; 58(9):2467-77. PubMed ID: 21622071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel blood glucose regulation using TSK0-FCMAC: a fuzzy CMAC based on the zero-ordered TSK fuzzy inference scheme.
    Ting CW; Quek C
    IEEE Trans Neural Netw; 2009 May; 20(5):856-71. PubMed ID: 19304482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial neural networks for closed loop control of in silico and ad hoc type 1 diabetes.
    Fernandez de Canete J; Gonzalez-Perez S; Ramos-Diaz JC
    Comput Methods Programs Biomed; 2012 Apr; 106(1):55-66. PubMed ID: 22178070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural network modeling and control of type 1 diabetes mellitus.
    El-Jabali AK
    Bioprocess Biosyst Eng; 2005 Apr; 27(2):75-9. PubMed ID: 15578231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural predictive controller for insulin delivery using the subcutaneous route.
    Trajanoski Z; Wach P
    IEEE Trans Biomed Eng; 1998 Sep; 45(9):1122-34. PubMed ID: 9735562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An intelligent diabetes software prototype: predicting blood glucose levels and recommending regimen changes.
    Otto E; Semotok C; Andrysek J; Basir O
    Diabetes Technol Ther; 2000; 2(4):569-76. PubMed ID: 11469620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-Time Model-Based Fault Detection of Continuous Glucose Sensor Measurements.
    Turksoy K; Roy A; Cinar A
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1437-1445. PubMed ID: 26930674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical validation of a new control-oriented model of insulin and glucose dynamics in subjects with type 1 diabetes.
    Fabietti PG; Canonico V; Orsini-Federici M; Sarti E; Massi-Benedetti M
    Diabetes Technol Ther; 2007 Aug; 9(4):327-38. PubMed ID: 17705688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Improved PID Algorithm Based on Insulin-on-Board Estimate for Blood Glucose Control with Type 1 Diabetes.
    Hu R; Li C
    Comput Math Methods Med; 2015; 2015():281589. PubMed ID: 26550021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical blood glucose control in hyper- and hypoglycemic and exercise scenarios by means of an H(infinity) algorithm.
    Quiroz G; Femat R
    J Theor Biol; 2010 Mar; 263(1):154-60. PubMed ID: 19962391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An insulin infusion advisory system for type 1 diabetes patients based on non-linear model predictive control methods.
    Zarkogianni K; Mougiakakou SG; Prountzou A; Vazeou A; Bartsocas CS; Nikita KS
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5972-5. PubMed ID: 18003374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extended Kalman filter state estimation-based nonlinear explicit model predictive control design for blood glucose regulation of type 1 diabetic patient.
    Acharya D; Das DK
    Med Biol Eng Comput; 2022 May; 60(5):1347-1361. PubMed ID: 35274280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A neural network approach for insulin regime and dose adjustment in type 1 diabetes.
    Mougiakakou SG; Nikita KS
    Diabetes Technol Ther; 2000; 2(3):381-9. PubMed ID: 11467341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance Analysis of Fuzzy-PID Controller for Blood Glucose Regulation in Type-1 Diabetic Patients.
    Yadav J; Rani A; Singh V
    J Med Syst; 2016 Dec; 40(12):254. PubMed ID: 27714563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A semiclosed-loop algorithm for the control of blood glucose levels in diabetics.
    Fisher ME
    IEEE Trans Biomed Eng; 1991 Jan; 38(1):57-61. PubMed ID: 2026432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Run-to-run control of meal-related insulin dosing.
    Zisser H; Jovanovic L; Doyle F; Ospina P; Owens C
    Diabetes Technol Ther; 2005 Feb; 7(1):48-57. PubMed ID: 15738703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A discrete-time recurrent neurofuzzy network for black-box modeling of insulin dynamics in diabetic type-1 patients.
    González-Olvera MA; Gallardo-Hernández AG; Tang Y; Revilla-Monsalve MC; Islas-Andrade S
    Int J Neural Syst; 2010 Apr; 20(2):149-58. PubMed ID: 20411597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new insulin-glucose metabolic model of type 1 diabetes mellitus: An in silico study.
    Fang Q; Yu L; Li P
    Comput Methods Programs Biomed; 2015 Jun; 120(1):16-26. PubMed ID: 25896293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous glucose monitoring: physiologic and pathophysiologic significance.
    Ionescu-Tîrgovişte C; Guja C; Ioacără S; Dumitrescu D; Tomescu I
    Rom J Intern Med; 2004; 42(2):381-93. PubMed ID: 15529628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.